# Squares in products with terms in an arithmetic progression

Acta Arithmetica (1998)

- Volume: 86, Issue: 1, page 27-43
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topN. Saradha. "Squares in products with terms in an arithmetic progression." Acta Arithmetica 86.1 (1998): 27-43. <http://eudml.org/doc/207179>.

@article{N1998,

author = {N. Saradha},

journal = {Acta Arithmetica},

keywords = {squares; arithmetic progression; product of consecutive positive integers; diophantine equations},

language = {eng},

number = {1},

pages = {27-43},

title = {Squares in products with terms in an arithmetic progression},

url = {http://eudml.org/doc/207179},

volume = {86},

year = {1998},

}

TY - JOUR

AU - N. Saradha

TI - Squares in products with terms in an arithmetic progression

JO - Acta Arithmetica

PY - 1998

VL - 86

IS - 1

SP - 27

EP - 43

LA - eng

KW - squares; arithmetic progression; product of consecutive positive integers; diophantine equations

UR - http://eudml.org/doc/207179

ER -

## References

top- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
- [2] L. E. Dickson, Introduction to the Theory of Numbers, Univ. of Chicago Press, 1946.
- [3] L. E. Dickson, History of the Theory of Numbers, Vol. II, Washington, 1919; reprint: Chelsea, New York, 1971. Zbl47.0100.04
- [4] P. Erdős, Note on products of consecutive integers, J. London Math. Soc. 14 (1939), 194-198. Zbl0021.20704
- [5] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301. Zbl0295.10017
- [6] W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk Mat. Tidsskrift 34 (1952), 65-72. Zbl0047.04102
- [7] R. Marsza/lek, On the product of consecutive elements of an arithmetic progression, Monatsh. Math. 100 (1985), 215-222.
- [8] A. Meyl, Question 1194, Nouv. Ann. Math. (2) 17 (1878), 464-467.
- [9] L. J. Mordell, Diophantine Equations, Academic Press, 1969.
- [10] I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, 1972. Zbl0237.10001
- [11] P. Ribenboim, Catalan's Conjecture, Academic Press, 1994. Zbl0824.11010
- [12] O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand., Helsingfors, 1938, Mercator, 155-160. Zbl65.0139.02
- [13] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. Zbl0122.05001
- [14] N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta Arith. 82 (1997), 147-172. Zbl0922.11025
- [15] T. N. Shorey and R. Tijdeman, On the greatest prime factor of an arithmetical progression, in: A Tribute to Paul Erdős, A. Baker, B. Bollobás and A. Hajnal (eds.), Cambridge Univ. Press, 1990, 385-389. Zbl0709.11004
- [16] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344. Zbl0708.11021
- [17] G. N. Watson, The problem of the square pyramid, Messenger Math. 48 (1919), 1-22.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.