ℚ-linear relations of special values of the Estermann zeta function

Makoto Ishibashi

Acta Arithmetica (1998)

  • Volume: 86, Issue: 3, page 239-244
  • ISSN: 0065-1036

How to cite

top

Makoto Ishibashi. "ℚ-linear relations of special values of the Estermann zeta function." Acta Arithmetica 86.3 (1998): 239-244. <http://eudml.org/doc/207193>.

@article{MakotoIshibashi1998,
author = {Makoto Ishibashi},
journal = {Acta Arithmetica},
keywords = {Estermann zeta function; ℚ-linear relation; Leopoldt's character coordinate; Special algebraic numbers; Estermann's zeta function; Bernoulli numbers; Bernoulli polynomials},
language = {eng},
number = {3},
pages = {239-244},
title = {ℚ-linear relations of special values of the Estermann zeta function},
url = {http://eudml.org/doc/207193},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Makoto Ishibashi
TI - ℚ-linear relations of special values of the Estermann zeta function
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 3
SP - 239
EP - 244
LA - eng
KW - Estermann zeta function; ℚ-linear relation; Leopoldt's character coordinate; Special algebraic numbers; Estermann's zeta function; Bernoulli numbers; Bernoulli polynomials
UR - http://eudml.org/doc/207193
ER -

References

top
  1. [1] T. Estermann, On the representation of a number as the sum of two products, Proc. London Math. Soc. (2) 31 (1930), 123-133. Zbl56.0174.02
  2. [2] K. Girstmair, Character coordinates and annihilators of cyclotomic numbers, Manuscripta Math. 59 (1987), 375-389. Zbl0624.12006
  3. [3] H. Hasse, Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952. 
  4. [4] M. Ishibashi, The value of the Estermann zeta functions at s=0, Acta Arith. 73 (1995), 357-361. Zbl0845.11034
  5. [5] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Stud. 74, Princeton Univ. Press, Princeton, N.J., 1972. Zbl0236.12001
  6. [6] M. Jutila, On exponential sums involving the divisor function, J. Reine Angew. Math. 355 (1985), 173-190. Zbl0542.10032
  7. [7] I. Kiuchi, On an exponential sum involving the arithmetic function σ a ( n ) , Math. J. Okayama Univ. 29 (1987), 93-105. 
  8. [8] H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119-149. Zbl0098.03403
  9. [9] Y. Motohashi, Riemann-Siegel Formula, Lecture Notes, Univ. of Colorado, Boulder, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.