Bases for integer-valued polynomials in a Galois field

Vichian Laohakosol

Acta Arithmetica (1998)

  • Volume: 87, Issue: 1, page 13-26
  • ISSN: 0065-1036

How to cite

top

Vichian Laohakosol. "Bases for integer-valued polynomials in a Galois field." Acta Arithmetica 87.1 (1998): 13-26. <http://eudml.org/doc/207202>.

@article{VichianLaohakosol1998,
author = {Vichian Laohakosol},
journal = {Acta Arithmetica},
keywords = {integer-valued polynomials; Galois field; bases; integer-valued polynomial},
language = {eng},
number = {1},
pages = {13-26},
title = {Bases for integer-valued polynomials in a Galois field},
url = {http://eudml.org/doc/207202},
volume = {87},
year = {1998},
}

TY - JOUR
AU - Vichian Laohakosol
TI - Bases for integer-valued polynomials in a Galois field
JO - Acta Arithmetica
PY - 1998
VL - 87
IS - 1
SP - 13
EP - 26
LA - eng
KW - integer-valued polynomials; Galois field; bases; integer-valued polynomial
UR - http://eudml.org/doc/207202
ER -

References

top
  1. [1] D. Brizolis and E. G. Straus, A basis for the ring of doubly integer-valued polynomials, J. Reine Angew. Math. 286/287 (1976), 187-195. Zbl0332.10035
  2. [2] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137-168. Zbl0012.04904
  3. [3] L. Carlitz, A set of polynomials, Duke Math. J. 6 (1940), 486-504. 
  4. [4] L. Carlitz, Finite sums and interpolation formulas over G F [ p n , x ] , Duke Math. J. 15 (1948), 1001-1012. Zbl0032.00303
  5. [5] L. Carlitz, A note on integral-valued polynomials, Indag. Math. 21 (1959), 294-298. 
  6. [6] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974. 
  7. [7] N. G. de Bruijn, Some classes of integer-valued functions, Indag. Math. 17 (1955), 363-367. Zbl0067.27301
  8. [8] R. R. Hall, On pseudo-polynomials, Mathematika 18 (1971), 71-77. Zbl0226.10019
  9. [9] V. Laohakosol and P. Ubolsri, A short note on integral-valued polynomials, Southeast Asian Bull. Math. 4 (1980), 43-47. Zbl0451.10038
  10. [10] W. Narkiewicz, Polynomial Mappings, Lecture Notes in Math. 1600, Springer, Berlin, 1995. 
  11. [11] G. Pólya and G. Szegő, Problems and Theorems in Analysis, Vol. II, Springer, New York, 1976. Zbl0338.00001
  12. [12] E. G. Straus, On the polynomials whose derivatives have integral values at the integers, Proc. Amer. Math. Soc. 2 (1951), 24-27. Zbl0043.04205
  13. [13] C. G. Wagner, Linear operators in local fields of prime characteristic, J. Reine Angew. Math. 251 (1971), 153-160. Zbl0226.12105
  14. [14] C. G. Wagner, Interpolation series for continuous functions on π-adic completions of GF(q,x), Acta Arith. 17 (1971), 389-406. 
  15. [15] C. G. Wagner, Interpolation series in local fields of prime characteristic, Duke Math. J. 39 (1972), 203-210. Zbl0237.12104
  16. [16] C. G. Wagner, Linear pseudo-polynomials over GF[q,x], Arch. Math. (Basel) 25 (1974), 385-390. Zbl0302.12013
  17. [17] C. G. Wagner, Polynomials over GF(q,x) with integral-valued differences, Arch. Math. (Basel) 27 (1976), 495-501. Zbl0341.12008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.