Courbes algébriques de genre ≥ 2 possédant de nombreux points rationnels

Leopoldo Kulesz

Acta Arithmetica (1998)

  • Volume: 87, Issue: 2, page 103-120
  • ISSN: 0065-1036

How to cite

top

Leopoldo Kulesz. "Courbes algébriques de genre ≥ 2 possédant de nombreux points rationnels." Acta Arithmetica 87.2 (1998): 103-120. <http://eudml.org/doc/207207>.

@article{LeopoldoKulesz1998,
author = {Leopoldo Kulesz},
journal = {Acta Arithmetica},
keywords = {genus ; hyperelliptic involution; group of automorphisms of a curve; elliptic curves; isogenies; many rational points; algebraic curve; families of curves},
language = {fre},
number = {2},
pages = {103-120},
title = {Courbes algébriques de genre ≥ 2 possédant de nombreux points rationnels},
url = {http://eudml.org/doc/207207},
volume = {87},
year = {1998},
}

TY - JOUR
AU - Leopoldo Kulesz
TI - Courbes algébriques de genre ≥ 2 possédant de nombreux points rationnels
JO - Acta Arithmetica
PY - 1998
VL - 87
IS - 2
SP - 103
EP - 120
LA - fre
KW - genus ; hyperelliptic involution; group of automorphisms of a curve; elliptic curves; isogenies; many rational points; algebraic curve; families of curves
UR - http://eudml.org/doc/207207
ER -

References

top
  1. [A-M] A. O. L. Atkin and F. Morain, Finding suitable curves for the Elliptic Curve Method of factorization, Math. Comp. 60 (1993), 399-405. 
  2. [CHM1] L. Caporaso, J. Harris and B. Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), 1-35. Zbl0872.14017
  3. [CHM2] L. Caporaso, J. Harris and B. Mazur, How many rational points can a curve have?, dans: The Moduli Space of Curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser, 1995, 13-31. 
  4. [C-F] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, London Math. Soc. Lecture Note Ser. 230, Cambridge Univ. Press, 1996. Zbl0857.14018
  5. [Dix] J. Dixmier, On the projective invariant of quartic plane curves, Adv. Math. 64 (1987), 279-304. Zbl0668.14006
  6. [EGH] D. Eisenbud, M. Green and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295-324. Zbl0871.14024
  7. [Elk1] N. Elkies, Curves with many points, preprint, 1995. 
  8. [Elk2] N. Elkies, Communication personnelle, 1997. 
  9. [K-K] W. Keller et L. Kulesz, Courbes algébriques de genre 2 et 3 possédant de nombreux points rationnels, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1469-1472. Zbl0873.11038
  10. [Kul] L. Kulesz, Courbes algébriques de genre 2 possédant de nombreux points rationnels, ibid., 91-94. 
  11. [Lep] F. Leprévost, Familles de courbes hyperelliptiques, dans : Séminaire de Théorie des nombres, Paris, 1991-1992, S. David (ed.), Progr. Math. 116, Birkhäuser, 1993, 107-119. 
  12. [Maz] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-169. 
  13. [Mes] J.-F. Mestre, Construction explicite de courbes de genre 2 à partir de leurs modules, dans : Effective Methods in Algebraic Geometry, Progr. Math. 94, Birkhäuser, 1991, 313-334. 
  14. [Sta] C. Stahlke, Algebraic curves over Q with many rational points and minimal automorphism group, Internat. Math. Res. Notices 1997, no. 1, 1-4. Zbl0881.14009
  15. [Suy] H. Suyama, Informal preliminary report (8), 1985. 
  16. [Vel] J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A 273 (1971), 238-241. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.