A uniform version of Jarník's theorem

Alain Plagne

Acta Arithmetica (1999)

  • Volume: 87, Issue: 3, page 255-267
  • ISSN: 0065-1036

How to cite

top

Alain Plagne. "A uniform version of Jarník's theorem." Acta Arithmetica 87.3 (1999): 255-267. <http://eudml.org/doc/207220>.

@article{AlainPlagne1999,
author = {Alain Plagne},
journal = {Acta Arithmetica},
keywords = {strictly convex curve; integer points; Farey fractions; lattice points; sequence of real numbers; convex curve},
language = {eng},
number = {3},
pages = {255-267},
title = {A uniform version of Jarník's theorem},
url = {http://eudml.org/doc/207220},
volume = {87},
year = {1999},
}

TY - JOUR
AU - Alain Plagne
TI - A uniform version of Jarník's theorem
JO - Acta Arithmetica
PY - 1999
VL - 87
IS - 3
SP - 255
EP - 267
LA - eng
KW - strictly convex curve; integer points; Farey fractions; lattice points; sequence of real numbers; convex curve
UR - http://eudml.org/doc/207220
ER -

References

top
  1. [1] E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), 337-357. Zbl0718.11048
  2. [2] G. Grekos, Sur le nombre de points entiers d'une courbe convexe, Bull. Sci. Math. (2) 112 (1988), 235-254. Zbl0657.10031
  3. [3] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1979. Zbl0423.10001
  4. [4] V. Jarník, Über die Gitterpunkte auf konvexen Kurven, Math. Z. 24 (1926), 500-518. 
  5. [5] H. Niederreiter, The distribution of Farey points, Math. Ann. 201 (1973), 341-345. Zbl0248.10013
  6. [6] J. Pila, Geometric postulation of a smooth function and the number of rational points, Duke Math. J. 63 (1991), 449-463. Zbl0763.11025
  7. [7] W. M. Schmidt, Integer points on curves and surfaces, Monatsh. Math. 99 (1985), 45-72. Zbl0551.10026
  8. [8] H. P. F. Swinnerton-Dyer, The number of lattice points on a convex curve, J. Number Theory 6 (1974), 128-135. Zbl0285.10020
  9. [9] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publication de l'Institut Élie Cartan, Nancy, 1990. 
  10. [10] A. M. Vershik, The limit shape of convex lattice polygons and related topics, Functional Anal. Appl. 28 (1994), 13-20. Zbl0848.52004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.