The Hasse Principle modulo nth powers

Victor Scharaschkin

Acta Arithmetica (1999)

  • Volume: 87, Issue: 3, page 269-285
  • ISSN: 0065-1036

How to cite

top

Victor Scharaschkin. "The Hasse Principle modulo nth powers." Acta Arithmetica 87.3 (1999): 269-285. <http://eudml.org/doc/207221>.

@article{VictorScharaschkin1999,
author = {Victor Scharaschkin},
journal = {Acta Arithmetica},
keywords = {Hasse principle; cohomological characterization},
language = {eng},
number = {3},
pages = {269-285},
title = {The Hasse Principle modulo nth powers},
url = {http://eudml.org/doc/207221},
volume = {87},
year = {1999},
}

TY - JOUR
AU - Victor Scharaschkin
TI - The Hasse Principle modulo nth powers
JO - Acta Arithmetica
PY - 1999
VL - 87
IS - 3
SP - 269
EP - 285
LA - eng
KW - Hasse principle; cohomological characterization
UR - http://eudml.org/doc/207221
ER -

References

top
  1. [1] A. Adem and R. J. Milgram, Cohomology of Finite Groups, Grundlehren Math. Wiss. 309, Springer, 1994. Zbl0820.20060
  2. [2] J. Arason, Cohomologische Invarianten quadratischer Formen, J. Algebra 36 (1975), 448-491. Zbl0314.12104
  3. [3] D. J. Benson, Representations and Cohomology I, Cambridge Stud. Adv. Math. 30, Cambridge Univ. Press, 1991. 
  4. [4] N. Bourbaki, Algebra II, English transl., Springer, 1990. 
  5. [5] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, 1982. 
  6. [6] J. F. Carlson, The mod-2 cohomology of 2-groups, http://www.math.uga.edu/~jfc/groups/cohomology.html. 
  7. [7] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956. 
  8. [8] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, 1967. 
  9. [9] A. Fröhlich, On non-ramified extensions with prescribed Galois group, Mathematika 9 (1962), 133-134. Zbl0106.02706
  10. [10] S. Gurak, On the Hasse Norm Principle, J. Reine Angew. Math. 299 (1978), 16-27. 
  11. [11] G. Karpilovsky, The Schur Multiplier, Oxford Univ. Press, 1987. Zbl0619.20001
  12. [12] Y. Koya, A generalization of class formation by using hypercohomology, Invent. Math. 101 (1990), 705-715. Zbl0751.11055
  13. [13] D. B. Leep and A. R. Wadsworth, The transfer ideal of quadratic forms and a Hasse norm theorem mod squares, Trans. Amer. Math. Soc. 315 (1989), 415-431. Zbl0681.10015
  14. [14] D. B. Leep and A. R. Wadsworth, The Hasse theorem mod squares, J. Number Theory 42 (1992), 337-348. Zbl0771.11045
  15. [15] J. Moshe, The Cebotarev density theorem for function fields: an elementary approach, Math. Ann. 261 (1982), 467-475. Zbl0501.12018
  16. [16] H. Opolka, Norm exponents and representation groups, Proc. Amer. Math. Soc. 111 (1961), 595-597. Zbl0676.12003
  17. [17] D. Quillen and B. B. Venkov, Cohomology of finite groups and elementary abelian subgroups, Topology 11 (1972), 317-318. Zbl0245.18010
  18. [18] D. J. Rusin, The cohomology of the groups of order 32, Math. Comp. 53 (1989), 359-385. Zbl0677.20039
  19. [19] J. P. Serre, Local Fields, English transl., Grad. Texts in Math. 67, Springer, 1979. 
  20. [20] E. Weiss, Cohomology of Groups, Academic Press, 1969. Zbl0192.34204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.