Number of representations related to a linear recurrent basis

Jean Marie Dumont; Nikita Sidorov; Alain Thomas

Acta Arithmetica (1999)

  • Volume: 88, Issue: 4, page 371-396
  • ISSN: 0065-1036

How to cite

top

Jean Marie Dumont, Nikita Sidorov, and Alain Thomas. "Number of representations related to a linear recurrent basis." Acta Arithmetica 88.4 (1999): 371-396. <http://eudml.org/doc/207254>.

@article{JeanMarieDumont1999,
author = {Jean Marie Dumont, Nikita Sidorov, Alain Thomas},
journal = {Acta Arithmetica},
keywords = {number of representations; linear recurrent basis; summation function; Lipschitz exponent; representation graph},
language = {eng},
number = {4},
pages = {371-396},
title = {Number of representations related to a linear recurrent basis},
url = {http://eudml.org/doc/207254},
volume = {88},
year = {1999},
}

TY - JOUR
AU - Jean Marie Dumont
AU - Nikita Sidorov
AU - Alain Thomas
TI - Number of representations related to a linear recurrent basis
JO - Acta Arithmetica
PY - 1999
VL - 88
IS - 4
SP - 371
EP - 396
LA - eng
KW - number of representations; linear recurrent basis; summation function; Lipschitz exponent; representation graph
UR - http://eudml.org/doc/207254
ER -

References

top
  1. [AlZ] J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. 44 (1991), 121-134. Zbl0691.58024
  2. [AllS] J. P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992), 163-197. Zbl0774.68072
  3. [Be] P. G. Becker, k-regular power series and Mahler-type functional equations, J. Number Theory 49 (1994), 269-286. Zbl0821.11013
  4. [Bo] D. Bogdanov, Branching graph for the de Rham curve, Master Thesis, St. Petersburg State University, St. Petersburg, 1993. 
  5. [Br] N. G. de Bruijn, On Mahler's partition problem, Indag. Math. 10 (1948), 210-220. 
  6. [Bu] Y. Bugeaud, Sur la suite des nombres de la forme ϵ + ϵ q + . . . + ϵ n q n , ϵ i 0 , 1 , to appear. Zbl0061.09302
  7. [Ca] L. Carlitz, Fibonacci representations, Fibonacci Quart. 6 (1968), 193-220. Zbl0167.03901
  8. [Co] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192. Zbl0253.02029
  9. [D] P. Dumas, Récurrences Mahlériennes, suites automatiques, et études asymptotiques, Doctorat de mathématiques, Université de Bordeaux, 1993. 
  10. [DF] P. Dumas et P. Flajolet, Asymptotique des récurrences mahlériennes: le cas cyclotomique, J. Théor. Nombres Bordeaux 8 (1996), 1-30. 
  11. [DuT] J. M. Dumont et A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169. Zbl0679.10010
  12. [E] P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-976. Zbl0022.35402
  13. [Fr] C. Frougny, Representations of numbers and finite automata, Math. Systems Theory 25 (1992), 37-60. Zbl0776.11005
  14. [JW] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1938), 48-88. Zbl0014.15401
  15. [KP] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged) 55 (1991), 287-299. Zbl0760.11002
  16. [LaNg] K.-S. Lau and S.-M. Ngai, L q -spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131 (1998), 225-251. Zbl0929.28005
  17. [Po] A. J. van der Poorten, An introduction to continued fractions, in: Diophantine Analysis, London Math. Soc. Lecture Note Ser. 109, Cambridge Univ. Press, 1986, 99-138. 
  18. [Pu] I. Pushkarev, The ideal lattices of multizigzags and the enumeration of Fibonacci partitions, Zap. Nauchn. Sem. POMI 223 (1995), 280-312 (in Russian). Zbl0909.05003
  19. [Rh] G. de Rham, Sur une courbe plane, J. Math. Pures Appl. 35 (1956), 25-42. Zbl0070.39101
  20. [Ru] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1964. 
  21. [S] N. A. Sidorov, The summation function for the number of Fibonacci representations, PDMI preprint 15/1995, 1-17. 
  22. [SV] N. A. Sidorov and A. M. Vershik, Ergodic properties of the Erdős measure, the entropy of the goldenshift, and related problems, Monatsh. Math. 126 (1998), 215-261. Zbl0916.28012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.