Solutions of cubic equations in quadratic fields
K. Chakraborty; Manisha V. Kulkarni
Acta Arithmetica (1999)
- Volume: 89, Issue: 1, page 37-43
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. W. S. Cassels, On a diophantine equation, Acta Arith. 6 (1960), 47-52. Zbl0094.25701
- [2] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, Cambridge, 1992. Zbl0758.14042
- [3] M. Laska, Solving the equation x³ - y² = r in number fields, J. Reine Angew. Math. 333 (1981), 73-85.
- [4] R. A. Mollin, C. Small, K. Varadarajan and P. G. Walsh, On unit solutions of the equation xyz = x+y+z in the ring of integers of a quadratic field, Acta Arith. 48 (1987), 341-345. Zbl0576.10009
- [5] G. Sansone et J. W. S. Cassels, Sur le problème de M. Werner Mnich, Acta Arith. 7 (1962), 187-190.
- [6] W. Sierpiński, Remarques sur le travail de M. J. W. S. Cassels 'On a diophantine equation', Acta Arith. 6 (1961), 469-471.
- [7] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, 1986.
- [8] C. Small, On the equation xyz = x+y+z = 1, Amer. Math. Monthly 89 (1982), 736-749. Zbl0505.12024