On the average number of direct factors of finite abelian groups (II)

Wenguang Zhai

Acta Arithmetica (1999)

  • Volume: 90, Issue: 1, page 69-78
  • ISSN: 0065-1036

How to cite

top

Wenguang Zhai. "On the average number of direct factors of finite abelian groups (II)." Acta Arithmetica 90.1 (1999): 69-78. <http://eudml.org/doc/207315>.

@article{WenguangZhai1999,
author = {Wenguang Zhai},
journal = {Acta Arithmetica},
keywords = {divisor functions; number of finite abelian groups; asymptotic behaviour; exponential sums},
language = {eng},
number = {1},
pages = {69-78},
title = {On the average number of direct factors of finite abelian groups (II)},
url = {http://eudml.org/doc/207315},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Wenguang Zhai
TI - On the average number of direct factors of finite abelian groups (II)
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 1
SP - 69
EP - 78
LA - eng
KW - divisor functions; number of finite abelian groups; asymptotic behaviour; exponential sums
UR - http://eudml.org/doc/207315
ER -

References

top
  1. [1] E. Cohen, On the average number of direct factors of a finite abelian group, Acta Arith. 6 (1960), 159-173. Zbl0113.25305
  2. [2] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333. Zbl0687.10028
  3. [3] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, ibid. 16 (1983), 242-266. Zbl0513.10042
  4. [4] A. Ivić, The Riemann Zeta-function, Wiley, 1985. Zbl0556.10026
  5. [5] G. Kolesnik, On the estimation of multiple exponential sums, in: Recent Progress in Analytic Number Theory (Durham, 1979), Vol. 1, Academic Press, London, 1981, 231-246. 
  6. [6] E. Krätzel, On the average number of direct factors of a finite abelian group, Acta Arith. 51 (1988), 369-379. Zbl0633.10044
  7. [7] H. Q. Liu, Divisor problems of 4 and 3 dimensions, ibid. 73 (1995), 249-269. Zbl0846.11056
  8. [8] H. Menzer, Vierdimensionale Gitterpunktprobleme I, II, Forschungsergebnisse, FSU, Jena, N/89/38, N/89/02, 1992. 
  9. [9] H. Menzer, On the average number of direct factors of a finite Abelian group, J. Théor. Nombres Bordeaux 7 (1995), 155-164. Zbl0840.11038
  10. [10] H. Menzer and R. Seibold, On the average number of direct factors of a finite Abelian group, Monatsh. Math. 110 (1990), 63-72. Zbl0731.11054
  11. [11] S. H. Min, Methods of Number Theory, Science Press, Beijing, 1983 (in Chinese). 
  12. [12] B. R. Srinivasan, The lattice point problem of many-dimensional hyperboloids II, Acta Arith. 8 (1963), 173-204. Zbl0118.28201
  13. [13] J. Wu, On the average number of unitary factors of finite abelian groups, ibid. 84 (1998), 17-29. Zbl0899.11048
  14. [14] G. Yu, On the number of direct factors of finite Abelian groups, Acta Math. Sinica 37 (1994), 663-670. Zbl0820.11056
  15. [15] W. G. Zhai and X. D. Cao, On the average number of direct factors of finite abelian groups, Acta Arith. 82 (1997), 45-55. Zbl0886.11054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.