Classes of polynomials having only one non-cyclotomic irreducible factor

A. Borisov; M. Filaseta; T. Y. Lam; O. Trifonov

Acta Arithmetica (1999)

  • Volume: 90, Issue: 2, page 121-153
  • ISSN: 0065-1036

How to cite


A. Borisov, et al. "Classes of polynomials having only one non-cyclotomic irreducible factor." Acta Arithmetica 90.2 (1999): 121-153. <>.

author = {A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov},
journal = {Acta Arithmetica},
keywords = {irreducibility of polynomials; diophantine equations},
language = {eng},
number = {2},
pages = {121-153},
title = {Classes of polynomials having only one non-cyclotomic irreducible factor},
url = {},
volume = {90},
year = {1999},

AU - A. Borisov
AU - M. Filaseta
AU - T. Y. Lam
AU - O. Trifonov
TI - Classes of polynomials having only one non-cyclotomic irreducible factor
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 2
SP - 121
EP - 153
LA - eng
KW - irreducibility of polynomials; diophantine equations
UR -
ER -


  1. [1] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, Cambridge, 1979. Zbl0497.10023
  2. [2] A. Borisov, On some polynomials allegedly related to the abc conjecture, Acta Arith. 84 (1998), 109-128. Zbl0903.11025
  3. [3] F. Q. Gouvêa, p-adic Numbers, An Introduction, Springer, Berlin, 1997. 
  4. [4] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley, Reading, Mass., 1989. 
  5. [5] E. Gutkin, Billiard Tables of Constant Width and Dynamical Characterizations of the Circle, Abstract, Penn State Workshop, October, 1993. 
  6. [6] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer, New York, 1977. Zbl0364.12015
  7. [7] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969. 
  8. [8] J.-L. Nicolas et A. Schinzel, Localisation des zéros de polynômes intervenant en théorie du signal, in: Cinquante ans de polynômes (Paris, 1988), Lecture Notes in Math. 1415, Springer, Berlin, 1990, 167-179. Zbl0703.30004
  9. [9] G. Pólya and G. Szegö, Problems and Theorems in Analysis I, Springer, New York, 1972. Zbl0236.00003
  10. [10] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-89. Zbl0122.05001
  11. [11] I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen. I, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1929, 125-136. Zbl55.0069.03
  12. [12] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1986. Zbl0606.10011
  13. [13] J. J. Sylvester, On arithmetical series, Messenger of Math. 21 (1892), 1-19. 
  14. [14] L. Washington, Cyclotomic Fields, Springer, New York, 1997. 
  15. [15] E. Weiss, Algebraic Number Theory, Chelsea, New York, 1963. Zbl0115.03601

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.