Classes of polynomials having only one non-cyclotomic irreducible factor
A. Borisov; M. Filaseta; T. Y. Lam; O. Trifonov
Acta Arithmetica (1999)
- Volume: 90, Issue: 2, page 121-153
- ISSN: 0065-1036
Access Full Article
topHow to cite
topA. Borisov, et al. "Classes of polynomials having only one non-cyclotomic irreducible factor." Acta Arithmetica 90.2 (1999): 121-153. <http://eudml.org/doc/207319>.
@article{A1999,
author = {A. Borisov, M. Filaseta, T. Y. Lam, O. Trifonov},
journal = {Acta Arithmetica},
keywords = {irreducibility of polynomials; diophantine equations},
language = {eng},
number = {2},
pages = {121-153},
title = {Classes of polynomials having only one non-cyclotomic irreducible factor},
url = {http://eudml.org/doc/207319},
volume = {90},
year = {1999},
}
TY - JOUR
AU - A. Borisov
AU - M. Filaseta
AU - T. Y. Lam
AU - O. Trifonov
TI - Classes of polynomials having only one non-cyclotomic irreducible factor
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 2
SP - 121
EP - 153
LA - eng
KW - irreducibility of polynomials; diophantine equations
UR - http://eudml.org/doc/207319
ER -
References
top- [1] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, Cambridge, 1979. Zbl0497.10023
- [2] A. Borisov, On some polynomials allegedly related to the abc conjecture, Acta Arith. 84 (1998), 109-128. Zbl0903.11025
- [3] F. Q. Gouvêa, p-adic Numbers, An Introduction, Springer, Berlin, 1997.
- [4] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley, Reading, Mass., 1989.
- [5] E. Gutkin, Billiard Tables of Constant Width and Dynamical Characterizations of the Circle, Abstract, Penn State Workshop, October, 1993.
- [6] N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer, New York, 1977. Zbl0364.12015
- [7] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
- [8] J.-L. Nicolas et A. Schinzel, Localisation des zéros de polynômes intervenant en théorie du signal, in: Cinquante ans de polynômes (Paris, 1988), Lecture Notes in Math. 1415, Springer, Berlin, 1990, 167-179. Zbl0703.30004
- [9] G. Pólya and G. Szegö, Problems and Theorems in Analysis I, Springer, New York, 1972. Zbl0236.00003
- [10] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-89. Zbl0122.05001
- [11] I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen. I, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1929, 125-136. Zbl55.0069.03
- [12] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math. 87, Cambridge Univ. Press, Cambridge, 1986. Zbl0606.10011
- [13] J. J. Sylvester, On arithmetical series, Messenger of Math. 21 (1892), 1-19.
- [14] L. Washington, Cyclotomic Fields, Springer, New York, 1997.
- [15] E. Weiss, Algebraic Number Theory, Chelsea, New York, 1963. Zbl0115.03601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.