On a fundamental result in van der Corput's method of estimating exponential sums

Hong-Quan Liu

Acta Arithmetica (1999)

  • Volume: 90, Issue: 4, page 357-370
  • ISSN: 0065-1036

How to cite

top

Hong-Quan Liu. "On a fundamental result in van der Corput's method of estimating exponential sums." Acta Arithmetica 90.4 (1999): 357-370. <http://eudml.org/doc/207333>.

@article{Hong1999,
author = {Hong-Quan Liu},
journal = {Acta Arithmetica},
keywords = {estimates on exponential sums; van der Corput method; error term},
language = {eng},
number = {4},
pages = {357-370},
title = {On a fundamental result in van der Corput's method of estimating exponential sums},
url = {http://eudml.org/doc/207333},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Hong-Quan Liu
TI - On a fundamental result in van der Corput's method of estimating exponential sums
JO - Acta Arithmetica
PY - 1999
VL - 90
IS - 4
SP - 357
EP - 370
LA - eng
KW - estimates on exponential sums; van der Corput method; error term
UR - http://eudml.org/doc/207333
ER -

References

top
  1. [1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1966. Zbl0154.31904
  2. [2] R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145. 
  3. [3] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266. Zbl0513.10042
  4. [4] C. H. Jia, The distribution of squarefree numbers, Sci. China Ser. A 36 (1993), 154-169. 
  5. [5] G. Kolesnik, On the order of ζ(1/2 + it) and Δ(R), Pacific J. Math. 98 (1982), 107-122. Zbl0476.10032
  6. [6] H.-Q. Liu, On the number of abelian groups of a given order, Acta Arith. 59 (1991), 261-277. Zbl0737.11024
  7. [7] H.-Q. Liu, On the number of abelian groups of a given order (supplement), Acta Arith.. 64 (1993), 285-296. 
  8. [8] H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith.. 65 (1993), 301-328. Zbl0797.11071
  9. [9] H.-Q. Liu, The number of cube-full numbers in an interval, Acta Arith.. 67 (1994), 1-12. 
  10. [10] H.-Q. Liu, The distribution of 4-full numbers, Acta Arith.. 67 (1994), 165-176. Zbl0810.11053
  11. [11] H.-Q. Liu, On some divisor problems, Acta Arith.. 68 (1994), 193-200. Zbl0817.11043
  12. [12] H.-Q. Liu, Divisor problems of 4 and 3 dimensions, Acta Arith.. 73 (1995), 249-269. Zbl0846.11056
  13. [13] H.-Q. Liu, A special triple exponential sum, Mathematika 42 (1995), 137-143. Zbl0829.11042
  14. [14] H.-Q. Liu, Almost primes in short intervals, J. Number Theory 57 (1996), 301-322. Zbl0847.11045
  15. [15] H.-Q. Liu and J. Rivat, On the Pjateckiĭ-Šapiro prime number theorem, Bull. London Math. Soc. 24 (1992), 143-147. Zbl0772.11032
  16. [16] S. H. Min, Methods in Number Theory, Vol. 2, Science Press, 1981 (in Chinese). Zbl0649.10001
  17. [17] E. Phillips, The zeta-function of Riemann, further developments of van der Corput's method, Quart. J. Math. 4 (1933), 209-225. Zbl59.0204.01
  18. [18] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised by D. R. Heath-Brown, Oxford, 1986. Zbl0601.10026
  19. [19] J. Wu, On the average number of unitary factors of finite abelian groups, Acta Arith. 84 (1998), 17-29. 
  20. [20] W.-G. Zhai and X.-D. Cao, On the average number of direct factors of finite abelian groups, Acta Arith.. 82 (1997), 45-55. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.