Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions
Acta Arithmetica (1999)
- Volume: 91, Issue: 1, page 57-73
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topUlrike M. A. Vorhauer. "Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions." Acta Arithmetica 91.1 (1999): 57-73. <http://eudml.org/doc/207339>.
@article{UlrikeM1999,
abstract = {1. Summary. In Part II we study arithmetic functions whose Dirichlet series satisfy a rather general type of functional equation. For the logarithmic Riesz mean of these functions we give a representation involving finite trigonometric sums. An essential tool here is the saddle point method. Estimation of the exponential sums in the special case of the circle problem will be the topic of Part III.},
author = {Ulrike M. A. Vorhauer},
journal = {Acta Arithmetica},
keywords = {circle problem; logarithmic Riesz mean; asymptotic representation; finite trigonometric sums},
language = {eng},
number = {1},
pages = {57-73},
title = {Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions},
url = {http://eudml.org/doc/207339},
volume = {91},
year = {1999},
}
TY - JOUR
AU - Ulrike M. A. Vorhauer
TI - Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 1
SP - 57
EP - 73
AB - 1. Summary. In Part II we study arithmetic functions whose Dirichlet series satisfy a rather general type of functional equation. For the logarithmic Riesz mean of these functions we give a representation involving finite trigonometric sums. An essential tool here is the saddle point method. Estimation of the exponential sums in the special case of the circle problem will be the topic of Part III.
LA - eng
KW - circle problem; logarithmic Riesz mean; asymptotic representation; finite trigonometric sums
UR - http://eudml.org/doc/207339
ER -
References
top- [1] T. M. Apostol, Identities involving the coefficients of certain Dirichlet series, Duke Math. J. 18 (1951), 517-525.
- [2] B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series, I, II, Trans. Amer. Math. Soc. 137 (1969), 345-359, 361-374.
- [3] B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series, III, Trans. Amer. Math. Soc. 146 (1969), 323-348. Zbl0191.33003
- [4] S. Bochner, Some properties of modular relations, Ann. of Math. 53 (1951), 323-363. Zbl0042.32101
- [5] K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and the average order of arithmetical functions, Acta Arith. 6 (1961), 487-505. Zbl0101.03703
- [6] K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. 74 (1961), 1-23. Zbl0107.03702
- [7] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. 76 (1962), 93-136. Zbl0211.37901
- [8] K. Chandrasekharan and R. Narasimhan, On the mean value of the error term for a class of arithmetical functions, Acta Math. 112 (1964), 41-67. Zbl0128.26302
- [9] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985. Zbl0556.10026
- [10] E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl. 1912, 687-771. Zbl43.0266.01
- [11] E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen (Zweite Abhandlung), Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl. 1915, 209-243. Zbl45.0312.02
- [12] H.-E. Richert, Beiträge zur Summierbarkeit Dirichletscher Reihen mit Anwendungen auf die Zahlentheorie, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. IIa (1956), 77-125. Zbl0071.28601
- [13] E. C. Titchmarsh, The Theory of Functions, 2nd ed., 1939, corrected reprint 1975, Oxford Univ. Press, London. Zbl0022.14602
- [14] G. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup. (3) 21 (1904), 207-267, 459-533. Zbl35.0220.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.