On the quotient sequence of sequences of integers
Rudolf Ahlswede; Levon H. Khachatrian; András Sárközy
Acta Arithmetica (1999)
- Volume: 91, Issue: 2, page 117-132
- ISSN: 0065-1036
Access Full Article
topHow to cite
topRudolf Ahlswede, Levon H. Khachatrian, and András Sárközy. "On the quotient sequence of sequences of integers." Acta Arithmetica 91.2 (1999): 117-132. <http://eudml.org/doc/207343>.
@article{RudolfAhlswede1999,
author = {Rudolf Ahlswede, Levon H. Khachatrian, András Sárközy},
journal = {Acta Arithmetica},
keywords = {quotient set of a set; infinite quotient set; lower density; upper logarithmic density},
language = {eng},
number = {2},
pages = {117-132},
title = {On the quotient sequence of sequences of integers},
url = {http://eudml.org/doc/207343},
volume = {91},
year = {1999},
}
TY - JOUR
AU - Rudolf Ahlswede
AU - Levon H. Khachatrian
AU - András Sárközy
TI - On the quotient sequence of sequences of integers
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 2
SP - 117
EP - 132
LA - eng
KW - quotient set of a set; infinite quotient set; lower density; upper logarithmic density
UR - http://eudml.org/doc/207343
ER -
References
top- [1] R. Ahlswede and L. H. Khachatrian, Classical results on primitive and recent results on cross-primitive sequences, in: The Mathematics of Paul Erdős, Vol. I, R. L. Graham and J. Nešetřil (eds.), Algorithms Combin. 13, Springer, 1997, 104-116. Zbl0882.11009
- [2] F. Behrend, On sequences of numbers not divisible by one another, J. London Math. Soc. 10 (1935), 42-44. Zbl61.0132.01
- [3] H. Davenport and P. Erdős, On sequences of positive integers, Acta Arith. 2 (1936), 147-151. Zbl0015.10001
- [4] P. Erdős, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), 126-128. Zbl61.0132.02
- [5] P. Erdős, A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936), 92-98. Zbl0014.01104
- [6] P. Erdős, On the distribution of additive functions, Ann. of Math. 97 (1946), 1-20. Zbl0061.07902
- [7] P. Erdős, A. Sárközy and E. Szemerédi, On the divisibility properties of sequences of integers I, Acta Arith. 11 (1966), 411-418. Zbl0146.27102
- [8] P. Erdős, A. Sárközy and E. Szemerédi, On divisibility properties of sequences of integers, in: Colloq. Math. Soc. János Bolyai 2, 1970, 35-49. Zbl0212.39704
- [9] H. Halberstam and K. F. Roth, Sequences, Springer, Berlin, 1983.
- [10] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math. 48 (1920), 76-92. Zbl46.0262.03
- [11] J. Kubilius, Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc. Transl. Math. Monographs 11, Providence, 1964. Zbl0133.30203
- [12] C. Pomerance and A. Sárközy, On homogeneous multiplicative hybrid problems in number theory, Acta Arith. 49 (1988), 291-302.
- [13] A. Sárközy, On divisibility properties of sequences of integers, in: The Mathematics of Paul Erdős, Vol. I, R. L. Graham and J. Nešetřil (eds.), Algorithms Combin. 13, Springer, 1997, 241-250. Zbl0868.11011
- [14] L. G. Sathe, On a problem of Hardy on the distribution of integers having given number of prime factors, J. Indian Math. Soc. 17 (1953), 63-141; and 18 (1954), 27-81. Zbl0051.28008
- [15] A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.