The Stickelberger element of an imaginary quadratic field

Peter Schmid

Acta Arithmetica (1999)

  • Volume: 91, Issue: 2, page 165-169
  • ISSN: 0065-1036

How to cite

top

Peter Schmid. "The Stickelberger element of an imaginary quadratic field." Acta Arithmetica 91.2 (1999): 165-169. <http://eudml.org/doc/207346>.

@article{PeterSchmid1999,
author = {Peter Schmid},
journal = {Acta Arithmetica},
keywords = {Stickelberger ideal; imaginary quadratic field; Stickelberger element},
language = {eng},
number = {2},
pages = {165-169},
title = {The Stickelberger element of an imaginary quadratic field},
url = {http://eudml.org/doc/207346},
volume = {91},
year = {1999},
}

TY - JOUR
AU - Peter Schmid
TI - The Stickelberger element of an imaginary quadratic field
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 2
SP - 165
EP - 169
LA - eng
KW - Stickelberger ideal; imaginary quadratic field; Stickelberger element
UR - http://eudml.org/doc/207346
ER -

References

top
  1. [1] D. A. Buell, Class groups of quadratic fields, Math. Comp. 30 (1976), 610-623. Zbl0334.12003
  2. [2] H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields, in: Number Theory (Noordwijkerhout, 1983), Lecture Notes in Math. 1068, Springer, 1984, 33-62. 
  3. [3] R. Kučera, On the Stickelberger ideal and circular units of a compositum of quadratic fields, J. Number Theory 56 (1996), 139-166. Zbl0840.11044
  4. [4] H. L. S. Orde, On Dirichlet's class number formula, J. London Math. Soc. (2) 18 (1978), 409-420. Zbl0399.10023
  5. [5] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. Zbl0465.12001
  6. [6] L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, Heidelberg, 1997. Zbl0966.11047

NotesEmbed ?

top

You must be logged in to post comments.