Quadratic function fields whose class numbers are not divisible by three

Humio Ichimura

Acta Arithmetica (1999)

  • Volume: 91, Issue: 2, page 181-190
  • ISSN: 0065-1036

How to cite

top

Humio Ichimura. "Quadratic function fields whose class numbers are not divisible by three." Acta Arithmetica 91.2 (1999): 181-190. <http://eudml.org/doc/207348>.

@article{HumioIchimura1999,
author = {Humio Ichimura},
journal = {Acta Arithmetica},
keywords = {quadratic function fields; divisor class number},
language = {eng},
number = {2},
pages = {181-190},
title = {Quadratic function fields whose class numbers are not divisible by three},
url = {http://eudml.org/doc/207348},
volume = {91},
year = {1999},
}

TY - JOUR
AU - Humio Ichimura
TI - Quadratic function fields whose class numbers are not divisible by three
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 2
SP - 181
EP - 190
LA - eng
KW - quadratic function fields; divisor class number
UR - http://eudml.org/doc/207348
ER -

References

top
  1. [1] E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I und II, Math. Z. 19 (1923), 153-246. Zbl50.0107.01
  2. [2] G. Cornell, Abhyankar's lemma and the class group, in: Number Theory, Carbondale, 1979, M. Nathanson (ed.), Lecture Notes in Math. 751, Springer, New York, 1981, 82-88. 
  3. [3] G. Cornell, Relative genus theory and the class group of l-extensions, Trans. Amer. Math. Soc. 277 (1983), 321-429. Zbl0514.12012
  4. [4] B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116-138. Zbl0632.12007
  5. [5] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420. Zbl0212.08101
  6. [6] C. Friesen, Class number divisibility in real quadratic function fields, Canad. Math. Bull. 35 (1992), 361-370. Zbl0727.11045
  7. [7] M. Hall, The Theory of Groups, Macmillan, New York, 1959. 
  8. [8] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class numbers are not divisible by three, J. Number Theory 6 (1976), 276-278. 
  9. [9] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38. 
  10. [10] H. Ichimura, On the class groups of pure function fields, Proc. Japan Acad. 64 (1988), 170-173; corrigendum, ibid. 75 (1999), 22. Zbl0664.12006
  11. [11] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258. Zbl0074.03002
  12. [12] I. Kimura, On class numbers of quadratic extensions over function fields, Manuscripta Math. 97 (1998), 81-91. Zbl0911.11053
  13. [13] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150. Zbl48.0170.03
  14. [14] P. Roquette and H. Zassenhaus, A class rank estimate for algebraic number fields, J. London Math. Soc. 44 (1969), 31-38. Zbl0169.38001
  15. [15] M. Rosen, The Hilbert class fields in function fields, Exposition. Math. 5 (1987), 365-378. Zbl0632.12017
  16. [16] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137-1157. Zbl0307.12005
  17. [17] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76. Zbl0222.12003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.