On sums and differences of two coprime kth powers

Wenguang Zhai

Acta Arithmetica (1999)

  • Volume: 91, Issue: 3, page 233-248
  • ISSN: 0065-1036

How to cite

top

Wenguang Zhai. "On sums and differences of two coprime kth powers." Acta Arithmetica 91.3 (1999): 233-248. <http://eudml.org/doc/207354>.

@article{WenguangZhai1999,
author = {Wenguang Zhai},
journal = {Acta Arithmetica},
keywords = {sums of higher power; number of primitive lattice points; plane domain; Riemann hypothesis; exponent pairs},
language = {eng},
number = {3},
pages = {233-248},
title = {On sums and differences of two coprime kth powers},
url = {http://eudml.org/doc/207354},
volume = {91},
year = {1999},
}

TY - JOUR
AU - Wenguang Zhai
TI - On sums and differences of two coprime kth powers
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 3
SP - 233
EP - 248
LA - eng
KW - sums of higher power; number of primitive lattice points; plane domain; Riemann hypothesis; exponent pairs
UR - http://eudml.org/doc/207354
ER -

References

top
  1. [1] R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford Ser. 45 (1994), 269-277. Zbl0812.11053
  2. [2] E. Fouvry and H. Iwaniec, Exponential sums for monomials, J. Number Theory 33 (1989), 311-333. Zbl0687.10028
  3. [3] M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301. Zbl0820.11060
  4. [4] A. Ivić, The Riemann Zeta-function, Wiley, 1985. Zbl0556.10026
  5. [5] E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988. 
  6. [6] E. Krätzel, Primitive lattice points in special plane domains and a related three-dimensional lattice point problem I, Forschungsergebnisse, FSU, Jena, N/87/11, 1987. Zbl0622.10036
  7. [7] H. L. Montgomery and R. C. Vaughan, The distribution of squarefree numbers, in: Recent Progress in Analytic Number Theory (Durham, 1979), Vol. 1, Academic Press, London, 1981, 247-256. 
  8. [8] B. Z. Moroz, On the number of primitive lattice points in plain domains, Monatsh. Math. 99 (1985), 37-43. Zbl0551.10038
  9. [9] W. Müller and W. G. Nowak, Lattice points in planar domains: applications of Huxley's 'discrete Hardy-Littlewood method', in: Number-Theoretic Analysis (Vienna, 1988-89), Lecture Notes in Math. 1452, Springer, 1990, 139-164. 
  10. [10] W. Müller and W. G. Nowak, On a mean-value theorem concerning differences of two k-th powers, Tsukuba J. Math. 13 (1989), 23-29. Zbl0687.10033
  11. [11] W. G. Nowak, On sums of two coprime k-th powers, Monatsh. Math. 108 (1989), 47-57. Zbl0678.10034
  12. [12] W. G. Nowak, On sums and differences of two relative prime cubes, Analysis 15 (1995), 325-341. Zbl0842.11032
  13. [13] W. G. Nowak, Primitive lattice points in starlike planar sets, Pacific J. Math. 170 (1997), 163-178. Zbl0917.11052
  14. [14] W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304. Zbl0860.11060
  15. [15] W. G. Nowak, On sums and differences of two relative prime cubes II, Tatra Mt. Math. Publ. 11 (1997) (Proc. Czech and Slovak Number Theory Conference, 1995), 23-34. Zbl0978.11050
  16. [16] W. G. Nowak, On differences of two k-th powers of integers, Ramanujan J. 2 (1998), 421-440. Zbl0922.11080
  17. [17] J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216. Zbl0575.42003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.