A binomial representation of the 3x + 1 problem

Maurice Margenstern; Yuri Matiyasevich

Acta Arithmetica (1999)

  • Volume: 91, Issue: 4, page 367-378
  • ISSN: 0065-1036

How to cite

top

Maurice Margenstern, and Yuri Matiyasevich. "A binomial representation of the 3x + 1 problem." Acta Arithmetica 91.4 (1999): 367-378. <http://eudml.org/doc/207362>.

@article{MauriceMargenstern1999,
author = {Maurice Margenstern, Yuri Matiyasevich},
journal = {Acta Arithmetica},
keywords = { problem; conjecture; Collatz problem; Ulam's problem; Syracuse algorithm; Kummer's theorem; binomial representation; sums of products of binomial coefficients},
language = {eng},
number = {4},
pages = {367-378},
title = {A binomial representation of the 3x + 1 problem},
url = {http://eudml.org/doc/207362},
volume = {91},
year = {1999},
}

TY - JOUR
AU - Maurice Margenstern
AU - Yuri Matiyasevich
TI - A binomial representation of the 3x + 1 problem
JO - Acta Arithmetica
PY - 1999
VL - 91
IS - 4
SP - 367
EP - 378
LA - eng
KW - problem; conjecture; Collatz problem; Ulam's problem; Syracuse algorithm; Kummer's theorem; binomial representation; sums of products of binomial coefficients
UR - http://eudml.org/doc/207362
ER -

References

top
  1. [1] M. Davis, Yu. Matijasevich and J. Robinson, Hilbert's tenth problem. Diophantine equations: positive aspects of a negative solution, in: Proc. Sympos. Pure Math. 28, Amer. Math. Soc., 1976, 323-378. 
  2. [2] M. Davis, H. Putnam and J. Robinson, The decision problem for exponential Diophantine equations, Ann. of Math. 74 (1961), 425-436. Zbl0111.01003
  3. [3] K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I, Monatsh. Math. Phys. 38 (1931), 173-198. Zbl57.0054.02
  4. [4] L. C. Hsu and P. J.-S. Shiue, On a combinatorial expression concerning Fermat's Last Theorem, Adv. in Appl. Math. 18 (1997), 216-219. Zbl0869.11027
  5. [5] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146. 
  6. [6] J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23 (available at: http://www.cecm.sfu.ca/organics/papers/lagarias/index.html). Zbl0566.10007
  7. [7] J. C. Lagarias, The 3x+1 problem and its generalizations, in: J. Borwein et al. (eds.), Organic Mathematics (Burnaby, 1995), Amer. Math. Soc., Providence, RI, 1995. Zbl0566.10007
  8. [8] J. C. Lagarias, 3x+1 Problem Annotated Bibliography, http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/local/anno_bib.ps. 
  9. [9] H. B. Mann and D. Shanks, A necessary and sufficient condition for primality, and its source, J. Combin. Theory Ser. A 13 (1972), 131-134. Zbl0239.10010
  10. [10] M. Margenstern, Frontier between decidability and undecidability: a survey, Theoret. Comput. Sci. (1999), to appear. 
  11. [11] Ju. V. Matijasevič [Yu. V. Matiyasevich], A class of primality criteria formulated in terms of the divisibility of binomial coefficients, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 67 (1977), 167-183, 226-227 (in Russian); English transl.: J. Soviet Math. 16 (1981), 874-885. 
  12. [12] Ju. V. Matijasevič [Yu. V. Matiyasevich], Some arithmetical restatements of the Four Color Conjecture, Theoret. Comput. Sci., to appear; a version is available at: http://logic.pdmi.ras.ru/~yumat/Journal/4cc, mirrored at http://www.informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/Journal/4cc. 
  13. [13] Ju. V. Matijasevič [Yu. V. Matiyasevich], Hilbert's Tenth Problem, Moscow, Fizmatlit, 1993 (in Russian). English transl.: MIT Press, 1993. French transl.: Masson, 1995. See also at: http://logic.pdmi.ras.ru/~yumat/H10Pbook, mirrored at http://www.informatik.uni-stuttgart.de/ifi/ti/personen/Matiyasevich/H10Pbook. 
  14. [14] P. Michel, Busy beaver competition and Collatz-like problems, Arch. Math. Logic 32 (1993), 351-367. Zbl0779.03009
  15. [15] M. Petkovšek, H. S. Wilf and D. Zeilberger, A=B, AK Peters, Wellesley, MA, 1996; http://www.cis.upenn.edu/~wilf/AeqB.html. 
  16. [16] D. Singmaster, Notes on binomial coefficients. I, II, III, J. London Math. Soc. (2) 8 (1974), 545-548, 549-554, 555-560. 
  17. [17] R. Thomas, An update on the Four-Colour Theorem, Notices Amer. Math. Soc. 45 (1998), 848-859 (available at: http://www.ams.org/notices/199807/thomas.ps, http://www.ams.org/notices/199807/thomas.pdf). Zbl0908.05040
  18. [18] H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and 'q') multisum/integral identities, Invent. Math. 108 (1992), 575-633. Zbl0739.05007
  19. [19] G. J. Wirsching, The Dynamical System Generated by the 3n+1 Function, Lecture Notes in Math. 1681, Springer, Berlin, 1998. Zbl0892.11002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.