On the factors of the period polynomial for finite fields
Acta Arithmetica (2000)
- Volume: 92, Issue: 2, page 153-167
- ISSN: 0065-1036
Access Full Article
topHow to cite
topS. Gurak. "On the factors $Φ^{(jδ/m)}$ of the period polynomial for finite fields." Acta Arithmetica 92.2 (2000): 153-167. <http://eudml.org/doc/207377>.
@article{S2000,
author = {S. Gurak},
journal = {Acta Arithmetica},
keywords = {Gauss periods over finite fields; computation of coefficients; period polynomial},
language = {eng},
number = {2},
pages = {153-167},
title = {On the factors $Φ^\{(jδ/m)\}$ of the period polynomial for finite fields},
url = {http://eudml.org/doc/207377},
volume = {92},
year = {2000},
}
TY - JOUR
AU - S. Gurak
TI - On the factors $Φ^{(jδ/m)}$ of the period polynomial for finite fields
JO - Acta Arithmetica
PY - 2000
VL - 92
IS - 2
SP - 153
EP - 167
LA - eng
KW - Gauss periods over finite fields; computation of coefficients; period polynomial
UR - http://eudml.org/doc/207377
ER -
References
top- [1] Z. Borevich and I. Shafarevich, Number Theory, Academic Press, New York, 1966.
- [2] S. Gupta and D. Zagier, On the coefficients of the minimal polynomial of Gaussian periods, Math. Comp. 60 (1993), 385-398. Zbl0819.11062
- [3] S. Gurak, Minimal polynomials for Gauss circulants and cyclotomic units, Pacific J. Math. 102 (1982), 347-353. Zbl0501.12003
- [4] S. Gurak, Factors of period polynomials for finite fields, II, in: Contemp. Math. 168, Amer. Math. Soc., 1994, 127-138. Zbl0819.11061
- [5] S. Gurak, On the last factor of the period polynomial for finite fields, Acta Arith. 71 (1995), 391-400. Zbl0819.11063
- [6] S. Gurak, On the minimal polynomials for certain Gauss periods over finite fields, in: Finite Fields and their Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, 1996, 85-96. Zbl0874.11080
- [7] S. Gurak, On the middle factor of the period polynomial for finite fields, CMR Proceedings and Lecture Notes 19 (1999), 121-131. Zbl0969.11039
- [8] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith. 39 (1981), 251-264. Zbl0393.12028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.