Algebraic independence of the values of Mahler functions satisfying implicit functional equations
Acta Arithmetica (2000)
- Volume: 93, Issue: 1, page 1-20
- ISSN: 0065-1036
Access Full Article
topHow to cite
topBernd Greuel. "Algebraic independence of the values of Mahler functions satisfying implicit functional equations." Acta Arithmetica 93.1 (2000): 1-20. <http://eudml.org/doc/207396>.
@article{BerndGreuel2000,
author = {Bernd Greuel},
journal = {Acta Arithmetica},
keywords = {functional equations; algebraic independence; infinite products},
language = {eng},
number = {1},
pages = {1-20},
title = {Algebraic independence of the values of Mahler functions satisfying implicit functional equations},
url = {http://eudml.org/doc/207396},
volume = {93},
year = {2000},
}
TY - JOUR
AU - Bernd Greuel
TI - Algebraic independence of the values of Mahler functions satisfying implicit functional equations
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 1
SP - 1
EP - 20
LA - eng
KW - functional equations; algebraic independence; infinite products
UR - http://eudml.org/doc/207396
ER -
References
top- [1] P.-G. Becker, Transcendence of the values of functions satisfying generalized Mahler type functional equations, J. Reine Angew. Math. 440 (1993), 111-128. Zbl0770.11037
- [2] V. G. Chirskiĭ, On the algebraic independence of the values of functions satisfying systems of functional equations, Proc. Steklov Inst. Math. 218 (1997), 433-438. Zbl0916.11041
- [3] J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in: Transcendence Theory - Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, New York, 1977, 211-226. Zbl0378.10020
- [4] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366. Zbl55.0115.01
- [5] K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930), 545-585. Zbl56.0186.01
- [6] K. Mahler, Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen, Math. Ann. 103 (1930), 573-587. Zbl56.0185.03
- [7] K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512-521.
- [8] K. Nishioka, On a problem of Mahler for transcendency of function values, J. Austral. Math. Soc. Ser. A 33 (1982), 386-393. Zbl0502.10018
- [9] K. Nishioka, On a problem of Mahler for transcendency of function values II, Tsukuba J. Math. 7 (1983), 265-279. Zbl0542.10025
- [10] K. Nishioka, New approach in Mahler's method, J. Reine Angew. Math. 407 (1990), 202-219. Zbl0694.10035
- [11] K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Math. 1631, Springer, 1996. Zbl0876.11034
- [12] T. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957. Zbl0077.04703
- [13] T. Töpfer, An axiomatization of Nesterenko's method and applications on Mahler functions, J. Number Theory 49 (1994), 1-26. Zbl0813.11043
- [14] T. Töpfer, Algebraic independence of the values of generalized Mahler functions, Acta Arith. 70 (1995), 161-181. Zbl0815.11038
- [15] T. Töpfer, Simultaneous approximation measures for functions satisfying generalized functional equations of Mahler type, Abh. Math. Sem. Univ. Hamburg 66 (1996), 177-201. Zbl0873.11044
- [16] M. Waldschmidt, Algebraic independence of transcendental numbers: a survey, in: Proceedings of the Fifth Conference of the Canadian Number Theory Association; Monograph on Number Theory, Indian National Science Academy, R. P. Bambah et al. (eds.), to appear; http://www.math.jussieu.fr/ miw, 1998.
- [17] N. C. Wass, Algebraic independence of the values at algebraic points of a class of functions considered by Mahler, Dissertationes Math. 303 (1990). Zbl0707.11050
- [18] A. Weil, Foundations of Algebraic Geometry, Colloq. Publ. 29, Amer. Math. Soc., 1962 Zbl0168.18701
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.