Zeros of Dirichlet L-series on the critical line
Acta Arithmetica (2000)
- Volume: 93, Issue: 1, page 37-52
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topPeter J. Bauer. "Zeros of Dirichlet L-series on the critical line." Acta Arithmetica 93.1 (2000): 37-52. <http://eudml.org/doc/207398>.
@article{PeterJ2000,
abstract = {
Introduction. In 1974, N. Levinson showed that at least 1/3 of the zeros of the Riemann ζ-function are on the critical line ([19]). Today it is known (Conrey, [6]) that at least 40.77% of the zeros of ζ(s) are on the critical line and at least 40.1% are on the critical line and are simple. In [16] and [17], Hilano showed that Levinson's original result is also valid for Dirichlet L-series.
This paper is a shortened version of parts of the dissertation [3], the full details of which may be found at http://www.math.uni-frankfurt.de/~pbauer/diss.ps. We shall prove a mean value theorem for Dirichlet L-series and use this for proving some corollaries concerning the distribution of the zeros of L-series - amongst other results we improve the above mentioned bounds for Dirichlet L-series.
},
author = {Peter J. Bauer},
journal = {Acta Arithmetica},
keywords = {-functions; zeros; Riemann's hypothesis},
language = {eng},
number = {1},
pages = {37-52},
title = {Zeros of Dirichlet L-series on the critical line},
url = {http://eudml.org/doc/207398},
volume = {93},
year = {2000},
}
TY - JOUR
AU - Peter J. Bauer
TI - Zeros of Dirichlet L-series on the critical line
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 1
SP - 37
EP - 52
AB -
Introduction. In 1974, N. Levinson showed that at least 1/3 of the zeros of the Riemann ζ-function are on the critical line ([19]). Today it is known (Conrey, [6]) that at least 40.77% of the zeros of ζ(s) are on the critical line and at least 40.1% are on the critical line and are simple. In [16] and [17], Hilano showed that Levinson's original result is also valid for Dirichlet L-series.
This paper is a shortened version of parts of the dissertation [3], the full details of which may be found at http://www.math.uni-frankfurt.de/~pbauer/diss.ps. We shall prove a mean value theorem for Dirichlet L-series and use this for proving some corollaries concerning the distribution of the zeros of L-series - amongst other results we improve the above mentioned bounds for Dirichlet L-series.
LA - eng
KW - -functions; zeros; Riemann's hypothesis
UR - http://eudml.org/doc/207398
ER -
References
top- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1986.
- [2] P. J. Bauer, Über den Anteil der Nullstellen der Riemannschen Zeta-Funktion auf der kritischen Geraden, Diploma thesis, Frankfurt a.M., 1992. (Available at http://www.math.uni-frankfurt.de/ pbauer/diplom.ps.)
- [3] P. J. Bauer, Zur Verteilung der Nullstellen der Dirichletschen L-Reihen, Dissertation, Frankfurt a.M., 1997. (Available at http://www.math.uni-frankfurt.de/ pbauer/diss.ps.)
- [4] D. A. Burgess, On character sums and L-series, Proc. London Math. Soc. 12 (1962), 193-206. Zbl0106.04004
- [5] J. B. Conrey, Zeros of derivatives of Riemann's Xi-function on the critical line, J. Number Theory 16 (1983), 49-74. Zbl0502.10022
- [6] J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. Reine Angew. Math. 399 (1989), 1-26. Zbl0668.10044
- [7] J. B. Conrey and A. Ghosh, A simpler proof of Levinson's theorem, Math. Proc. Cambridge Philos. Soc. 97 (1985), 385-395. Zbl0554.10025
- [8] J. B. Conrey, A. Ghosh and S. M. Gonek, Mean values of the Riemann zeta-function with application to the distribution of zeros, in: Number Theory, Trace Formulas and Discrete Groups, K. E. Aubert et al. (eds.), Academic Press, 1989, 185-199.
- [9] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980. Zbl0453.10002
- [10] J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288.
- [11] J.-M. Deshouillers and H. Iwaniec, Power mean-values for Dirichlet's polynomials and the Riemann zeta-function II, Acta Arith. 43 (1984), 305-312.
- [12] T. Estermann, On the representation of a number as the sum of two products, Proc. London Math. Soc. (2) 31 (1930), 123-133. Zbl56.0174.02
- [13] D. W. Farmer, Mean value of Dirichlet series associated with holomorphic cusp forms, J. Number Theory 49 (1994), 209-245. Zbl0817.11028
- [14] P. X. Gallagher, A large sieve density estimate near σ=1, Invent. Math. 11 (1970), 329-339. Zbl0219.10048
- [15] S. M. Gonek, Mean values of the Riemann zeta-function and its derivatives, ibid. 75 (1984), 123-141. Zbl0531.10040
- [16] T. Hilano, On the distribution of zeros of Dirichlet's L-function on the line σ=1/2, Proc. Japan Acad. 52 (1976), 537-540. Zbl0368.10031
- [17] T. Hilano, On the distribution of zeros of Dirichlet's L-function on the line σ=1/2 (II), Tokyo J. Math. 1 (1978), 285-304. Zbl0401.10051
- [18] G. Kolesnik, On the order of Dirichlet L-functions, Pacific J. Math. 82 (1979), 479-484. Zbl0423.10022
- [19] N. Levinson, More than one third of the zeros of Riemann's zeta-function are on σ=1/2, Adv. Math. 13 (1974), 383-436. Zbl0281.10017
- [20] H. L. Montgomery, Topics in Multiplicative Number Theory, Springer, 1971. Zbl0216.03501
- [21] K. Prachar, Primzahlverteilung, Springer, 1957.
- [22] A. Selberg, On the zeros of Riemann's zeta-function, Skr. Norske Videnskaps-Akad. Oslo, I, 10 (1942), 1-59.
- [23] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Clarendon Press, 1988. Zbl0042.07901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.