# A note on a result of Bateman and Chowla

Acta Arithmetica (2000)

- Volume: 93, Issue: 2, page 139-148
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topP. Codecà, and M. Nair. "A note on a result of Bateman and Chowla." Acta Arithmetica 93.2 (2000): 139-148. <http://eudml.org/doc/207405>.

@article{P2000,

author = {P. Codecà, M. Nair},

journal = {Acta Arithmetica},

keywords = {Trigonometric polynomials with the Liouville function as coefficients; problem of N. J. Fine; Besicovitchs function; application of Vaughans identity; lower estimate of weighted -norms for trigonometric polynomials of higher order; multiplicative weights; estimates of exponential sums containing the Möbius function; analogues of Siegel-Walfisz theorem for multiplicative functions},

language = {eng},

number = {2},

pages = {139-148},

title = {A note on a result of Bateman and Chowla},

url = {http://eudml.org/doc/207405},

volume = {93},

year = {2000},

}

TY - JOUR

AU - P. Codecà

AU - M. Nair

TI - A note on a result of Bateman and Chowla

JO - Acta Arithmetica

PY - 2000

VL - 93

IS - 2

SP - 139

EP - 148

LA - eng

KW - Trigonometric polynomials with the Liouville function as coefficients; problem of N. J. Fine; Besicovitchs function; application of Vaughans identity; lower estimate of weighted -norms for trigonometric polynomials of higher order; multiplicative weights; estimates of exponential sums containing the Möbius function; analogues of Siegel-Walfisz theorem for multiplicative functions

UR - http://eudml.org/doc/207405

ER -

## References

top- [1] P. T. Bateman and S. Chowla, Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372-374. Zbl0116.26904
- [2] A. S. Besicovitch, Problem on continuity, ibid. 36 (1961), 388-392. Zbl0103.04101
- [3] H. Davenport, On some infinite series involving arithmetic functions (II), Quart. J. Math. (Oxford) 8 (1937), 313-320. Zbl63.0906.01
- [4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. Zbl0298.10026
- [5] H. Siebert, Einige Analoga zum Satz von Siegel-Walfisz, in: Zahlentheorie (Tagung, Math. Forschungsinst., Oberwolfach, 1970), Bibliographisches Inst., Mannheim, 1971, 173-184.
- [6] R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge Univ. Press, Cambridge, 1997. Zbl0868.11046

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.