A note on a result of Bateman and Chowla

P. Codecà; M. Nair

Acta Arithmetica (2000)

  • Volume: 93, Issue: 2, page 139-148
  • ISSN: 0065-1036

How to cite

top

P. Codecà, and M. Nair. "A note on a result of Bateman and Chowla." Acta Arithmetica 93.2 (2000): 139-148. <http://eudml.org/doc/207405>.

@article{P2000,
author = {P. Codecà, M. Nair},
journal = {Acta Arithmetica},
keywords = {Trigonometric polynomials with the Liouville function as coefficients; problem of N. J. Fine; Besicovitchs function; application of Vaughans identity; lower estimate of weighted -norms for trigonometric polynomials of higher order; multiplicative weights; estimates of exponential sums containing the Möbius function; analogues of Siegel-Walfisz theorem for multiplicative functions},
language = {eng},
number = {2},
pages = {139-148},
title = {A note on a result of Bateman and Chowla},
url = {http://eudml.org/doc/207405},
volume = {93},
year = {2000},
}

TY - JOUR
AU - P. Codecà
AU - M. Nair
TI - A note on a result of Bateman and Chowla
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 2
SP - 139
EP - 148
LA - eng
KW - Trigonometric polynomials with the Liouville function as coefficients; problem of N. J. Fine; Besicovitchs function; application of Vaughans identity; lower estimate of weighted -norms for trigonometric polynomials of higher order; multiplicative weights; estimates of exponential sums containing the Möbius function; analogues of Siegel-Walfisz theorem for multiplicative functions
UR - http://eudml.org/doc/207405
ER -

References

top
  1. [1] P. T. Bateman and S. Chowla, Some special trigonometric series related to the distribution of prime numbers, J. London Math. Soc. 38 (1963), 372-374. Zbl0116.26904
  2. [2] A. S. Besicovitch, Problem on continuity, ibid. 36 (1961), 388-392. Zbl0103.04101
  3. [3] H. Davenport, On some infinite series involving arithmetic functions (II), Quart. J. Math. (Oxford) 8 (1937), 313-320. Zbl63.0906.01
  4. [4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. Zbl0298.10026
  5. [5] H. Siebert, Einige Analoga zum Satz von Siegel-Walfisz, in: Zahlentheorie (Tagung, Math. Forschungsinst., Oberwolfach, 1970), Bibliographisches Inst., Mannheim, 1971, 173-184. 
  6. [6] R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge Univ. Press, Cambridge, 1997. Zbl0868.11046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.