# A conditional density theorem for the zeros of the Riemann zeta-function

Acta Arithmetica (2000)

- Volume: 93, Issue: 3, page 293-301
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topAlessandro Zaccagnini. "A conditional density theorem for the zeros of the Riemann zeta-function." Acta Arithmetica 93.3 (2000): 293-301. <http://eudml.org/doc/207415>.

@article{AlessandroZaccagnini2000,

author = {Alessandro Zaccagnini},

journal = {Acta Arithmetica},

keywords = {Riemann zeta-function; density theorems; Selberg integral; Riemann Hypothesis},

language = {eng},

number = {3},

pages = {293-301},

title = {A conditional density theorem for the zeros of the Riemann zeta-function},

url = {http://eudml.org/doc/207415},

volume = {93},

year = {2000},

}

TY - JOUR

AU - Alessandro Zaccagnini

TI - A conditional density theorem for the zeros of the Riemann zeta-function

JO - Acta Arithmetica

PY - 2000

VL - 93

IS - 3

SP - 293

EP - 301

LA - eng

KW - Riemann zeta-function; density theorems; Selberg integral; Riemann Hypothesis

UR - http://eudml.org/doc/207415

ER -

## References

top- [1] D. Bazzanella and A. Perelli, The exceptional set for the number of primes in short intervals, to appear. Zbl0972.11087
- [2] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1974).
- [3] D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in: Analytic Number Theory and Diophantine Problems, A. Adolphson et al. (eds.), Birkhäuser, Boston, 1987, 183-203. Zbl0629.10032
- [4] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. Zbl0241.10026
- [5] G. Kolesnik and E. G. Straus, On the sum of powers of complex numbers, in: Studies in Pure Mathematics, To the Memory of P. Turán, P. Erdős (ed.), Birkhäuser, Basel, 1983, 427-442. Zbl0519.10031
- [6] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences. II, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, 1-30. Zbl0379.10023
- [7] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986. Zbl0601.10026
- [8] P. Turán, On a New Method of Analysis and its Applications, Wiley, New York, 1984.
- [9] A. Zaccagnini, Primes in almost all short intervals, Acta Arith. 84 (1998), 225-244. Zbl0895.11035

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.