A conditional density theorem for the zeros of the Riemann zeta-function

Alessandro Zaccagnini

Acta Arithmetica (2000)

  • Volume: 93, Issue: 3, page 293-301
  • ISSN: 0065-1036

How to cite

top

Alessandro Zaccagnini. "A conditional density theorem for the zeros of the Riemann zeta-function." Acta Arithmetica 93.3 (2000): 293-301. <http://eudml.org/doc/207415>.

@article{AlessandroZaccagnini2000,
author = {Alessandro Zaccagnini},
journal = {Acta Arithmetica},
keywords = {Riemann zeta-function; density theorems; Selberg integral; Riemann Hypothesis},
language = {eng},
number = {3},
pages = {293-301},
title = {A conditional density theorem for the zeros of the Riemann zeta-function},
url = {http://eudml.org/doc/207415},
volume = {93},
year = {2000},
}

TY - JOUR
AU - Alessandro Zaccagnini
TI - A conditional density theorem for the zeros of the Riemann zeta-function
JO - Acta Arithmetica
PY - 2000
VL - 93
IS - 3
SP - 293
EP - 301
LA - eng
KW - Riemann zeta-function; density theorems; Selberg integral; Riemann Hypothesis
UR - http://eudml.org/doc/207415
ER -

References

top
  1. [1] D. Bazzanella and A. Perelli, The exceptional set for the number of primes in short intervals, to appear. Zbl0972.11087
  2. [2] E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1974). 
  3. [3] D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in: Analytic Number Theory and Diophantine Problems, A. Adolphson et al. (eds.), Birkhäuser, Boston, 1987, 183-203. Zbl0629.10032
  4. [4] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170. Zbl0241.10026
  5. [5] G. Kolesnik and E. G. Straus, On the sum of powers of complex numbers, in: Studies in Pure Mathematics, To the Memory of P. Turán, P. Erdős (ed.), Birkhäuser, Basel, 1983, 427-442. Zbl0519.10031
  6. [6] B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences. II, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, 1-30. Zbl0379.10023
  7. [7] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986. Zbl0601.10026
  8. [8] P. Turán, On a New Method of Analysis and its Applications, Wiley, New York, 1984. 
  9. [9] A. Zaccagnini, Primes in almost all short intervals, Acta Arith. 84 (1998), 225-244. Zbl0895.11035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.