On the Barban-Davenport-Halberstam theorem: XIII
Acta Arithmetica (2000)
- Volume: 94, Issue: 1, page 53-86
- ISSN: 0065-1036
Access Full Article
topHow to cite
topHooley, C.. "On the Barban-Davenport-Halberstam theorem: XIII." Acta Arithmetica 94.1 (2000): 53-86. <http://eudml.org/doc/207425>.
@article{Hooley2000,
author = {Hooley, C.},
journal = {Acta Arithmetica},
keywords = {Barban-Davenport-Halberstam; Selberg sieve; maximal large sieve},
language = {eng},
number = {1},
pages = {53-86},
title = {On the Barban-Davenport-Halberstam theorem: XIII},
url = {http://eudml.org/doc/207425},
volume = {94},
year = {2000},
}
TY - JOUR
AU - Hooley, C.
TI - On the Barban-Davenport-Halberstam theorem: XIII
JO - Acta Arithmetica
PY - 2000
VL - 94
IS - 1
SP - 53
EP - 86
LA - eng
KW - Barban-Davenport-Halberstam; Selberg sieve; maximal large sieve
UR - http://eudml.org/doc/207425
ER -
References
top- [1] J. B. Friedlander and D. A. Goldston, Variance of distribution of primes in residue classes, Quart. J. Math. Oxford Ser. (2) 47 (1996), 313-336. Zbl0859.11054
- [2] D. A. Goldston, A lower bound for the second moment of primes in short intervals, Exposition. Math. 13 (1995), 366-376. Zbl0854.11044
- [3] S. Graham, An asymptotic estimate related to Selberg's sieve, J. Number Theory 10 (1978), 83-94. Zbl0382.10031
- [4] C. Hooley, Application of Sieve Methods to the Theory of Numbers, Cambridge Univ. Press, Cambridge, 1976.
- [5] C. Hooley, On the Barban-Davenport-Halberstam theorem: I, J. Reine Angew. Math. 274/275 (1975), 206-223.
- [6] C. Hooley, On the Barban-Davenport-Halberstam theorem: II, J. London Math. Soc. (2) 9 (1975), 625-636. Zbl0304.10028
- [7] C. Hooley, On the Barban-Davenport-Halberstam theorem: XII, in: Number Theory in Progress (Zakopane, 1997), Vol. II, de Gruyter, 1999, 893-910. Zbl0943.11042
- [8] H. Q. Liu, Lower bounds for sums of Barban-Davenport-Halberstam type (supplement), Manuscripta Math. 87 (1995), 159-166. Zbl0834.11036
- [9] H. L. Montgomery, Maximal variants of the large sieve, J. Fac. Sci. Univ. Tokyo Sect. 1A 28 (1982), 805-812.
- [10] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951. Zbl0042.07901
- [11] J. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 183-216. Zbl0575.42003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.