On the Barban-Davenport-Halberstam theorem: XIII

C. Hooley

Acta Arithmetica (2000)

  • Volume: 94, Issue: 1, page 53-86
  • ISSN: 0065-1036

How to cite

top

Hooley, C.. "On the Barban-Davenport-Halberstam theorem: XIII." Acta Arithmetica 94.1 (2000): 53-86. <http://eudml.org/doc/207425>.

@article{Hooley2000,
author = {Hooley, C.},
journal = {Acta Arithmetica},
keywords = {Barban-Davenport-Halberstam; Selberg sieve; maximal large sieve},
language = {eng},
number = {1},
pages = {53-86},
title = {On the Barban-Davenport-Halberstam theorem: XIII},
url = {http://eudml.org/doc/207425},
volume = {94},
year = {2000},
}

TY - JOUR
AU - Hooley, C.
TI - On the Barban-Davenport-Halberstam theorem: XIII
JO - Acta Arithmetica
PY - 2000
VL - 94
IS - 1
SP - 53
EP - 86
LA - eng
KW - Barban-Davenport-Halberstam; Selberg sieve; maximal large sieve
UR - http://eudml.org/doc/207425
ER -

References

top
  1. [1] J. B. Friedlander and D. A. Goldston, Variance of distribution of primes in residue classes, Quart. J. Math. Oxford Ser. (2) 47 (1996), 313-336. Zbl0859.11054
  2. [2] D. A. Goldston, A lower bound for the second moment of primes in short intervals, Exposition. Math. 13 (1995), 366-376. Zbl0854.11044
  3. [3] S. Graham, An asymptotic estimate related to Selberg's sieve, J. Number Theory 10 (1978), 83-94. Zbl0382.10031
  4. [4] C. Hooley, Application of Sieve Methods to the Theory of Numbers, Cambridge Univ. Press, Cambridge, 1976. 
  5. [5] C. Hooley, On the Barban-Davenport-Halberstam theorem: I, J. Reine Angew. Math. 274/275 (1975), 206-223. 
  6. [6] C. Hooley, On the Barban-Davenport-Halberstam theorem: II, J. London Math. Soc. (2) 9 (1975), 625-636. Zbl0304.10028
  7. [7] C. Hooley, On the Barban-Davenport-Halberstam theorem: XII, in: Number Theory in Progress (Zakopane, 1997), Vol. II, de Gruyter, 1999, 893-910. Zbl0943.11042
  8. [8] H. Q. Liu, Lower bounds for sums of Barban-Davenport-Halberstam type (supplement), Manuscripta Math. 87 (1995), 159-166. Zbl0834.11036
  9. [9] H. L. Montgomery, Maximal variants of the large sieve, J. Fac. Sci. Univ. Tokyo Sect. 1A 28 (1982), 805-812. 
  10. [10] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951. Zbl0042.07901
  11. [11] J. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 183-216. Zbl0575.42003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.