θ-congruent numbers and elliptic curves

Makiko Kan

Acta Arithmetica (2000)

  • Volume: 94, Issue: 2, page 153-160
  • ISSN: 0065-1036

How to cite

top

Kan, Makiko. "θ-congruent numbers and elliptic curves." Acta Arithmetica 94.2 (2000): 153-160. <http://eudml.org/doc/207428>.

@article{Kan2000,
author = {Kan, Makiko},
journal = {Acta Arithmetica},
keywords = {-congruent number; elliptic curve; Selmer group},
language = {eng},
number = {2},
pages = {153-160},
title = {θ-congruent numbers and elliptic curves},
url = {http://eudml.org/doc/207428},
volume = {94},
year = {2000},
}

TY - JOUR
AU - Kan, Makiko
TI - θ-congruent numbers and elliptic curves
JO - Acta Arithmetica
PY - 2000
VL - 94
IS - 2
SP - 153
EP - 160
LA - eng
KW - -congruent number; elliptic curve; Selmer group
UR - http://eudml.org/doc/207428
ER -

References

top
  1. [1] B. J. Birch, Elliptic curves and modular functions, in: Symposia Math. IV (Roma, 1968/69), Academic Press, 1970, 27-32. Zbl1214.11081
  2. [2] B. J. Birch, Heegner points of elliptic curves, in: Symposia Math. XV (Roma, 1973), Academic Press, 1975, 441-445. 
  3. [3] J. S. Chahal, On an identity of Desboves, Proc. Japan Acad. Ser. A 60 (1984), 105-108. Zbl0562.14010
  4. [4] G. Frey, Some aspects of the theory of elliptic curves over number fields, Exposition. Math. 4 (1986), 35-66. Zbl0596.14022
  5. [5] R. Fricke, Lehrbuch der Algebra III, Braunschweig, 1928. Zbl54.0187.20
  6. [6] M. Fujiwara, θ-congruent numbers, in: Number Theory, K. Győry, A. Pethő, and V. Sós (eds.), de Gruyter, 1997, 235-241. 
  7. [7] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225-320. Zbl0608.14019
  8. [8] P. Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990), 45-68. Zbl0705.14023
  9. [9] P. Serf, Congruent numbers and elliptic curves, in: Computational Number Theory, A. Pethő et al. (eds.), de Gruyter, 1991, 227-238. Zbl0736.11017
  10. [10] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. Zbl0585.14026
  11. [11] A. Wiman, Über den Rang von Kurven y 2 = x ( x + a ) ( x + b ) , Acta Math. 76 (1944), 225-251. Zbl0061.07109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.