Connection between Schinzel’s conjecture and divisibility of the class number
Acta Arithmetica (2000)
- Volume: 94, Issue: 2, page 161-171
- ISSN: 0065-1036
Access Full Article
topHow to cite
topJakubec, Stanislav. "Connection between Schinzel’s conjecture and divisibility of the class number $h_{p}^{+}$." Acta Arithmetica 94.2 (2000): 161-171. <http://eudml.org/doc/207429>.
@article{Jakubec2000,
author = {Jakubec, Stanislav},
journal = {Acta Arithmetica},
keywords = {cyclotomic fields; class numbers; Bernoulli numbers; Schinzel's conjecture; Euler numbers; Bernoulli polynomials; Euler polynomials},
language = {eng},
number = {2},
pages = {161-171},
title = {Connection between Schinzel’s conjecture and divisibility of the class number $h_\{p\}^\{+\}$},
url = {http://eudml.org/doc/207429},
volume = {94},
year = {2000},
}
TY - JOUR
AU - Jakubec, Stanislav
TI - Connection between Schinzel’s conjecture and divisibility of the class number $h_{p}^{+}$
JO - Acta Arithmetica
PY - 2000
VL - 94
IS - 2
SP - 161
EP - 171
LA - eng
KW - cyclotomic fields; class numbers; Bernoulli numbers; Schinzel's conjecture; Euler numbers; Bernoulli polynomials; Euler polynomials
UR - http://eudml.org/doc/207429
ER -
References
top- [1] E. R. Hansen, A Table of Series and Products, Prentice-Hall, 1973.
- [2] S. Jakubec, Divisibility of the class number of the real cyclotomic fields of prime degree l, Math. Comp. 67 (1998), 369-398. Zbl0914.11057
- [3] S. Jakubec, On divisibility of by the prime 3, Rocky Mountain J. Math. 24 (1994), 1467-1473. Zbl0821.11053
- [4] T. Lepistö, On the growth of the first factor of the class number of the prime cyclotomic field, Ann. Acad. Sci. Fenn. Ser. A I Math. 577 (1974). Zbl0294.12005
- [5] T. Metsänkylä, Class numbers and μ-invariants of cyclotomic fields, Proc. Amer. Math. Soc. 43 (1974), 299-300. Zbl0257.12004
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.