Gauss sum for the adjoint representation of G L n ( q ) and S L n ( q )

Yeon-Kwan Jeong; In-Sok Lee; Hyekyoung Oh; Kyung-Hwan Park

Acta Arithmetica (2000)

  • Volume: 95, Issue: 1, page 1-16
  • ISSN: 0065-1036

How to cite

top

Jeong, Yeon-Kwan, et al. "Gauss sum for the adjoint representation of $GL_{n}(q)$ and $SL_{n}(q)$." Acta Arithmetica 95.1 (2000): 1-16. <http://eudml.org/doc/207439>.

@article{Jeong2000,
author = {Jeong, Yeon-Kwan, Lee, In-Sok, Oh, Hyekyoung, Park, Kyung-Hwan},
journal = {Acta Arithmetica},
keywords = {adjoint representation; $GL_\{n\}(q)$; $SL_\{n\}(q)$; Gauss sum; $PGL_\{n\}(q)$; GL; PGL; SL; multiplicative character; finite group of Lie type; character sums},
language = {eng},
number = {1},
pages = {1-16},
title = {Gauss sum for the adjoint representation of $GL_\{n\}(q)$ and $SL_\{n\}(q)$},
url = {http://eudml.org/doc/207439},
volume = {95},
year = {2000},
}

TY - JOUR
AU - Jeong, Yeon-Kwan
AU - Lee, In-Sok
AU - Oh, Hyekyoung
AU - Park, Kyung-Hwan
TI - Gauss sum for the adjoint representation of $GL_{n}(q)$ and $SL_{n}(q)$
JO - Acta Arithmetica
PY - 2000
VL - 95
IS - 1
SP - 1
EP - 16
LA - eng
KW - adjoint representation; $GL_{n}(q)$; $SL_{n}(q)$; Gauss sum; $PGL_{n}(q)$; GL; PGL; SL; multiplicative character; finite group of Lie type; character sums
UR - http://eudml.org/doc/207439
ER -

References

top
  1. [1] A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969. Zbl0186.33201
  2. [2] R. W. Carter, Finite Groups of Lie Type; Conjugacy Classes and Complex Characters, Wiley, New York, 1985. Zbl0567.20023
  3. [3] W. Fulton and J. Harris, Representation Theory, Springer, New York, 1991. Zbl0744.22001
  4. [4] J. E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math. 21, Springer, 1975. 
  5. [5] D. S. Kim, Gauss sums for general and special linear groups over a finite field, Arch. Math. (Basel) 69 (1997), 297-304. Zbl1036.11528
  6. [6] D. S. Kim, Gauss sums for O - ( 2 n , q ) , Acta Arith. 80 (1997), 343-365. 
  7. [7] D. S. Kim, Gauss sum for U ( 2 n + 1 , q 2 ) , J. Korean Math. Soc. 34 (1997), 871-894. Zbl1036.11527
  8. [8] D. S. Kim, Gauss sums for O ( 2 n + 1 , q ) , Finite Fields Appl. 4 (1998), 62-86. Zbl0937.11058
  9. [9] D. S. Kim, Gauss sum for U ( 2 n , q 2 ) , Glasgow Math. J. 40 (1998), 79-95. Zbl0915.11061
  10. [10] D. S. Kim, Gauss sums for symplectic groups over a finite field, Monatsh. Math., to appear. Zbl1036.11529
  11. [11] D. S. Kim and I.-S. Lee, Gauss sums for O + ( 2 n , q ) , Acta Arith. 78 (1996), 75-89. 
  12. [12] D. S. Kim and Y. H. Park, Gauss sums for orthogonal groups over a finite field of characteristic two, ibid. 82 (1997), 331-357. 
  13. [13] I.-S. Lee and K. H. Park, Gauss sums for G 2 ( q ) , Bull. Korean Math. Soc. 34 (1997), 305-315. Zbl0891.11059
  14. [14] K.-H. Park, Gauss sum for representations of G L n ( q ) and S L n ( q ) , thesis, Seoul National University, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.