On the maximal density of sum-free sets
Acta Arithmetica (2000)
- Volume: 95, Issue: 3, page 225-229
- ISSN: 0065-1036
Access Full Article
topHow to cite
topŁuczak, Tomasz, and Schoen, Tomasz. "On the maximal density of sum-free sets." Acta Arithmetica 95.3 (2000): 225-229. <http://eudml.org/doc/207449>.
@article{Łuczak2000,
author = {Łuczak, Tomasz, Schoen, Tomasz},
journal = {Acta Arithmetica},
keywords = {sum-free sets; Folkman theorem; infinite arithmetic progression},
language = {eng},
number = {3},
pages = {225-229},
title = {On the maximal density of sum-free sets},
url = {http://eudml.org/doc/207449},
volume = {95},
year = {2000},
}
TY - JOUR
AU - Łuczak, Tomasz
AU - Schoen, Tomasz
TI - On the maximal density of sum-free sets
JO - Acta Arithmetica
PY - 2000
VL - 95
IS - 3
SP - 225
EP - 229
LA - eng
KW - sum-free sets; Folkman theorem; infinite arithmetic progression
UR - http://eudml.org/doc/207449
ER -
References
top- [1] J.-M. Deshoulliers, P. Erdős and G. Melfi, On a question about sum-free sequences, Discrete Math. 200 (1999), 49-54. Zbl0958.11023
- [2] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
- [3] P. Erdős, Remarks on number theory, III, Math. Lapok 13 (1962), 28-38 (in Hungarian).
- [4] J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643-655. Zbl0151.03703
- [5] N. Hegyvári, On the representation of integers as sums of distinct terms of a fixed set, Acta Arith. 92 (2000), 99-104. Zbl0949.11015
- [6] A. Sárközy, Finite addition theorems I, J. Number Theory 32 (1989), 114-130. Zbl0674.10042
- [7] A. Sárközy, Finite addition theorems II, ibid. 48 (1994), 197-218.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.