# On the maximal density of sum-free sets

Acta Arithmetica (2000)

- Volume: 95, Issue: 3, page 225-229
- ISSN: 0065-1036

## Access Full Article

top## How to cite

topŁuczak, Tomasz, and Schoen, Tomasz. "On the maximal density of sum-free sets." Acta Arithmetica 95.3 (2000): 225-229. <http://eudml.org/doc/207449>.

@article{Łuczak2000,

author = {Łuczak, Tomasz, Schoen, Tomasz},

journal = {Acta Arithmetica},

keywords = {sum-free sets; Folkman theorem; infinite arithmetic progression},

language = {eng},

number = {3},

pages = {225-229},

title = {On the maximal density of sum-free sets},

url = {http://eudml.org/doc/207449},

volume = {95},

year = {2000},

}

TY - JOUR

AU - Łuczak, Tomasz

AU - Schoen, Tomasz

TI - On the maximal density of sum-free sets

JO - Acta Arithmetica

PY - 2000

VL - 95

IS - 3

SP - 225

EP - 229

LA - eng

KW - sum-free sets; Folkman theorem; infinite arithmetic progression

UR - http://eudml.org/doc/207449

ER -

## References

top- [1] J.-M. Deshoulliers, P. Erdős and G. Melfi, On a question about sum-free sequences, Discrete Math. 200 (1999), 49-54. Zbl0958.11023
- [2] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997.
- [3] P. Erdős, Remarks on number theory, III, Math. Lapok 13 (1962), 28-38 (in Hungarian).
- [4] J. Folkman, On the representation of integers as sums of distinct terms from a fixed sequence, Canad. J. Math. 18 (1966), 643-655. Zbl0151.03703
- [5] N. Hegyvári, On the representation of integers as sums of distinct terms of a fixed set, Acta Arith. 92 (2000), 99-104. Zbl0949.11015
- [6] A. Sárközy, Finite addition theorems I, J. Number Theory 32 (1989), 114-130. Zbl0674.10042
- [7] A. Sárközy, Finite addition theorems II, ibid. 48 (1994), 197-218.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.