Some algorithmic aspects of subspace identificationwith inputs

Alessandro Chiuso; Giorgio Picci

International Journal of Applied Mathematics and Computer Science (2001)

  • Volume: 11, Issue: 1, page 55-75
  • ISSN: 1641-876X

Abstract

top
It has been experimentally verified that most commonly used subspace methods for identification of linear state-space systems with exogenous inputs may, in certain experimental conditions, run into ill-conditioning and lead to ambiguous results. An analysis of the critical situations has lead us to propose a new algorithmic structure which could be used either to test difficult cases andor to implement a suitable combination of new and old algorithms presented in the literature to help fixing the problem.

How to cite

top

Chiuso, Alessandro, and Picci, Giorgio. "Some algorithmic aspects of subspace identificationwith inputs." International Journal of Applied Mathematics and Computer Science 11.1 (2001): 55-75. <http://eudml.org/doc/207505>.

@article{Chiuso2001,
abstract = {It has been experimentally verified that most commonly used subspace methods for identification of linear state-space systems with exogenous inputs may, in certain experimental conditions, run into ill-conditioning and lead to ambiguous results. An analysis of the critical situations has lead us to propose a new algorithmic structure which could be used either to test difficult cases andor to implement a suitable combination of new and old algorithms presented in the literature to help fixing the problem.},
author = {Chiuso, Alessandro, Picci, Giorgio},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {ill-conditioning; multivariable systems; identification with inputs; subspace identification; Kalman gain estimation; identification; state space models; orthogonal decomposition; observability matrix},
language = {eng},
number = {1},
pages = {55-75},
title = {Some algorithmic aspects of subspace identificationwith inputs},
url = {http://eudml.org/doc/207505},
volume = {11},
year = {2001},
}

TY - JOUR
AU - Chiuso, Alessandro
AU - Picci, Giorgio
TI - Some algorithmic aspects of subspace identificationwith inputs
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 1
SP - 55
EP - 75
AB - It has been experimentally verified that most commonly used subspace methods for identification of linear state-space systems with exogenous inputs may, in certain experimental conditions, run into ill-conditioning and lead to ambiguous results. An analysis of the critical situations has lead us to propose a new algorithmic structure which could be used either to test difficult cases andor to implement a suitable combination of new and old algorithms presented in the literature to help fixing the problem.
LA - eng
KW - ill-conditioning; multivariable systems; identification with inputs; subspace identification; Kalman gain estimation; identification; state space models; orthogonal decomposition; observability matrix
UR - http://eudml.org/doc/207505
ER -

References

top
  1. Akaike H. (1974): Stochastic theory of minimal realization. -IEEE Trans. Automat. Contr., Vol.AC-19, No.6,pp.667-674. Zbl0292.93013
  2. Akaike H. (1975): Markovian representation of stochastic processes by canonical variables. - SIAM J. Contr., Vol.13, No.1, pp.162-173. Zbl0312.60017
  3. Akaike H. (1976): Canonical correlation analysis of time series andthe use of an information criterion, In: System Identification: Advances and Case Studies (R. Mehra and D. Lainiotis, Eds.). - New York: Academic Press,pp.27-96. 
  4. Aoki M. (1990): State Space Modeling of Time Series, 2nd Ed. -Berlin: Springer. 
  5. Bauer D. (1998): Some asymptotic theory for the estimation of linear systemsusing maximum likelihood methods or subspace algorithms. - Ph.D.Thesis, TU Wien. 
  6. Bauer D. (2000): Asymptotic efficiency of the CCA subspace method in thecase of no exogenous inputs. - (submitted). 
  7. Bauer D. and Jansson M. (2000): Analysis of the asymptotic properties of the moesp type ofsubspace algorithms. - Automatica, Vol.36, No.4, pp.497-509. Zbl0984.93014
  8. Bittanti S. and Lovera M. (1998): Assessing Model Uncertainty in Subspace Identification Methods: a Simulation Study, In: Proc. MTNS-98 (A. Beghi, L. Finesso, G. Picci, Eds.). - Padova: Il Poligrafo, pp.703-706. 
  9. Chiuso A. (2000): Geometric methods for subspace identifcation. - Ph.D. Thesis,Department of Electronics and Informatics, University of Padova, Italy. 
  10. Chiuso A. and Picci G. (1999): Subspace identification by orthogonal decomposition. -Proc. 14th IFAC World Congress, Beijing, China, Vol.I, pp.241-246. 
  11. Chiuso A. and Picci G. (2000a): Error analysis of certain subspace methods. -Proc. SYSID 2000, S. Barbara, CA, Session No.WEAM3-1 (on CD-ROM). Zbl1075.93040
  12. Chiuso A. and Picci G. (2000b): Probing inputs for subspace identification. - Proc. 39th Conf. Decision and Control, Sydney, Australia, CA, pp.1544-1549. 
  13. Chiuso A. and Picci G. (2000c): On the ill-conditioning of certain subspace identification methods with inputs. - (in preparation). Zbl1168.93330
  14. Chou T. and Verhaegen M. (1997): Subspace algorithms for the identification ofmultivariable dynamic errors-in-variables models. - Automatica, Vol.33,No.10, pp.1857-1869. Zbl0889.93011
  15. Faurre P. (1976): Stochastic realization algorithms,In: System Identification: Advances and Case Studies (R. Mehra and D. Lainotis,Eds.). - New York: Academic Press. 
  16. Guidorzi R.P. (1981): Invariants and canonical forms for systems: structural andparameter identification. - Automatica, Vol.17, No.1, pp.117-133. Zbl0451.93027
  17. Ho B.L. and Kalman R.E. (1966): Effective construction of linearstate-variable models from inputoutput functions. - Regelungstechnik, Vol.14, No.12, pp.545-548. Zbl0145.12701
  18. Hotelling H. (1936): Relations between two sets of variables. - Biometrika, Vol.28, No.3, pp.321-377. Zbl0015.40705
  19. Jansson M. and Wahlberg B. (1997): Counterexample to the general consistency of subspace system identification metods. -Proc. SYSID 97, Fukuoka, Japan, pp.1677-1682. 
  20. Kawauchi H., Chiuso A., Katayama T. and Picci G. (1999): Comparison of two subspaceidentification methods for combined deterministic-stochasticsystems. - Proc. 31st ISCIE Int. Symp.s Stochastic Systems Theory and its Applications, Yokohama, Japan, pp.7-12. 
  21. Katayama T. and Picci G. (1999): Realization of stochastic systems with exogenousinputs and subspace system identification methods. - Automatica, Vol.35, No.10, pp.1635-1652. Zbl0933.93025
  22. Katayama T., Omori T. and Picci T. (1998): Comparison of some subspace identification methods. - Proc. Conf. Decision and Control, Tampa, Florida, pp.1850-1852. 
  23. Larimore W.E. (1983): System identification, reduced-order filtering and modeling viacanonical variate analysis. -Proc. American Control Conf., San Francisco, CA, pp.445-451. 
  24. Larimore W.E. (1990): Canonical variate analysis inidentification, filtering, and adaptive control. - Proc. 29th IEEE Conf. Decision and Control, Honolulu, pp.596-604. 
  25. Lindquist A. and Pavon M. (1984): On the structure of state space models of discrete-time vector processes. - IEEE Trans. Automat. Contr., Vol.AC-29,No.5, pp.418-432. Zbl0538.93067
  26. Lindquist A. and Picci G. (1979): On the stochastic realization problem. -SIAM J. Contr. Optim., Vol.17, No.3, pp.365-389. Zbl0428.60052
  27. Lindquist A. and Picci G. (1991): A geometric approach to modelling and estimation of linear stochasticsystems. -J. Math. Syst. Estim. Contr., Vol.1, No.3, pp.241-333. 
  28. Lindquist A. and Picci G. (1996a): Canonical correlation analysisapproximate covariance extension and identification of stationary timeseries. - Automatica, Vol.32, No.5, pp.709-733. Zbl0856.93099
  29. Lindquist A. and Picci G. (1996b): Geometric methods for state spaceidentification, In: Identification, Adaptation, Learning, (Lectures given at the NATO-ASI School, From Identifiation to Learning held in Como, Italy). - Berlin: Springer. 
  30. Lindquist A., Picci G. and Ruckebusch G. (1979): On minimal splitting subspaces and Markovian representation. -Math. Syst. Theory, Vol.12, pp.271-279. Zbl0401.60056
  31. Ljung L. (1987): System Identification-Theory for the User. -Englewood Cliffs, NJ: Prentice-Hall. Zbl0615.93004
  32. Lovera M. (1997): Subspace metods: Theory and applications. - Ph.D. Thesis, Politecnico di Milano. 
  33. Moonen M. and Vandewalle J. (1990): QSVD Approach to on- and off-linestate-space identification. - Int. J. Contr., Vol.51, No.5, pp.1133-1146. Zbl0703.93072
  34. Moonen M., De Moor B., Vanderberghe L. and Vandewalle J. (1989): On- and off-line identification of linear state-space models. -Int. J. Contr., Vol.49, No.1, pp.219-232. Zbl0661.93072
  35. Ober R.J. (1996): Balanced canonical forms, In: Identification,Adaptation, Learning, (Lectures given at the NATO-ASI School,e From Identifiation to Learning held in Como, Italy,Aug.1994), Berlin: Springer. 
  36. Peternell K. (1995): Identification of linear time-invariant systems viasubspace and realization-based methods. - Ph.D. Thesis, TU Wien. 
  37. Peternell K., Scherrer W. and Deistler M. (1996): Statisticalanalysis of novel subspace identification methods. - Signal Process., Vol.52, No.2, pp.161-177. Zbl0875.93563
  38. Picci G. (1976): Stochastic realization of Gaussianprocesses. - Proc. IEEE, Vol.64, No.1, pp.112-122. 
  39. Picci G. (1996): Geometric Methods in Stochastic Realization and System Identification. -CWI Quarterly, Special Issue on System Theory, Vol.9, No.3,pp.205-240. Zbl0868.93011
  40. Picci G. (1997a): Stochastic realization and system identification, In: Statistical Methods in Control and Signal Processing (T. Katayama and I. Sugimoto,Eds.). - New York: M. Dekker. Zbl0919.93004
  41. Picci G. (1997b): Oblique splitting susbspaces and stochastic realization withinputs, In: Operators, Systems and Linear Algebra (U. Helmke, D. Pratzel-Woltersand E. Zerz, Eds.). - Stuttgart: Teubner, pp.157-174. Zbl0890.93018
  42. Picci G. (1997c): Statistical properties of certain subspace identificationmethods, Proc. SYSID 97, Fukuoka, Japan, Vol.3, pp.1093-1099. 
  43. Picci G. and Katayama T. (1996a): A simple 'subspace' identification algorithm with exogenous inputs. -Proc. Triennial IFAC Congress, San Francisco, CA, Vol.I, pp.175-180. Zbl0875.94073
  44. Picci G. and Katayama T. (1996b): Stochastic realization with exogenous inputs and 'Subspace Methods' Identification. - Signal Process., Vol.52, No.2, pp.145-160. Zbl0875.94073
  45. Ruckebusch G. (1976): Representations markoviennes de processus gaussiensstationnaires. - C.R. Acad. Sc. Paris, Series A, Vol.282, pp.649-651. Zbl0367.60038
  46. Ruckebusch G. (1978): A state space approach to the stochastic realization problem. -Proc. 1978 IEEE Int. Symp. Circuits and Systems, New York, pp.972-977. 
  47. Stoica P. and Viberg M. (1995): Weighted LS and TLS approaches yields asympotically equivalentresults. -Signal Process., Vol.45, No.2, pp.255-259. Zbl0871.62059
  48. Van Overschee P. and De Moor B. (1993): Subspacealgorithms for the stochastic identification problem. - Automatica, Vol.29,No.3, pp.649-660. Zbl0771.93082
  49. Van Overschee P. and De Moor B. (1994): N4SID: Subspace algorithms for the identification of combineddeterministic-stochastic systems. - Automatica, Vol.30, No.1, pp.75-93. Zbl0787.93097
  50. Van Overschee P. and De Moor B. (1996): Subspace Identificationfor Linear Systems. - Dordrecht: Kluwer. 
  51. Verhaegen M. (1993): Application of a subspace model identification technique toidentify LTI systems operating in closed-loop. - Automatica, Vol.29,No.4, pp.1027-1040. Zbl0850.93173
  52. Verhaegen M. (1994): Identification of thedeterministic part of MIMO state space models given in innovations form frominput-output data. - Automatica, Vol.30, No.1, pp.61-74. Zbl0791.93054
  53. Verhaegen M. and Dewilde P. (1992): Subspace model identification,Part 1. The output-error state-space model identification class of algorithms; Part 2.Analysis of the elementary output-error state-space model identification algorithm. -Int. J. Contr., Vol.56, No.5, pp.1187-1210; 1211-1241. Zbl0772.93020
  54. Viberg M. (1995): Subspace-based methods for the identification oflinear time-invariant systems. - Automatica, Vol.31, No.3, pp.1835-1851. Zbl0846.93023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.