# Separation principle for nonlinear systems: a bilinear approach

International Journal of Applied Mathematics and Computer Science (2001)

- Volume: 11, Issue: 2, page 481-492
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topHammami, Mohamed, and Jerbi, Hamadi. "Separation principle for nonlinear systems: a bilinear approach." International Journal of Applied Mathematics and Computer Science 11.2 (2001): 481-492. <http://eudml.org/doc/207516>.

@article{Hammami2001,

abstract = {In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.},

author = {Hammami, Mohamed, Jerbi, Hamadi},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {bilinear systems; observer; stabilization; nonlinear systems; bilinear system; state observer; separation principle},

language = {eng},

number = {2},

pages = {481-492},

title = {Separation principle for nonlinear systems: a bilinear approach},

url = {http://eudml.org/doc/207516},

volume = {11},

year = {2001},

}

TY - JOUR

AU - Hammami, Mohamed

AU - Jerbi, Hamadi

TI - Separation principle for nonlinear systems: a bilinear approach

JO - International Journal of Applied Mathematics and Computer Science

PY - 2001

VL - 11

IS - 2

SP - 481

EP - 492

AB - In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.

LA - eng

KW - bilinear systems; observer; stabilization; nonlinear systems; bilinear system; state observer; separation principle

UR - http://eudml.org/doc/207516

ER -

## References

top- Baccioti A. and Boieri P. (1991): A characterization of single input planar bilinear systems which admit a smooth stabilizer. -Syst. Contr. Lett., Vol.16, pp.139-143. Zbl0732.93067
- Boothby W. and Marino R. (1989): Feedback stabilization of planar nonlinear systems. - Syst. Contr. Lett., Vol.12, pp.87-92. Zbl0684.93062
- Bornard G., Couenne N. and Celle F. (1989): Regularly persistent observers for bilinear systems. - Berlin: Springer, Contr. Inform. Sci., pp.130-140. Zbl0676.93031
- Chabour R. and Hammouri H. (1993): Stabilization of planar bilinear systems using an observer configuration. - Appl. Math. Lett., Vol.6, pp.7-10. Zbl0774.93014
- Chabour R., Sallet G. and Vivalda J.C. (1996): Stabilization of nonlinear two dimensional systems: A bilinear approach. -Math. Contr. Signal Syst., pp.224-246. Zbl0797.93038
- Chabour R. and Vivalda J.C. (1991): Stabilisation des systèmes bilineaires dans le plan par une commande non reguliere. - Proc. European Control Conference, ECC'91, Grenoble, France, pp.485-487.
- Dayawansa W.P., Martin C.F. and Knowles G. (1990): Asymptotic stabilization of a class smooth two-dimensional systems. - SIAM J. Contr. Optim., Vol.28, pp.1321-1349. Zbl0731.93076
- Gauthier J.P. and Kupka I. (1992): A separation principle for bilinear systems with dissipative drift. - IEEE Trans. Automat. Contr., Vol. AC-37, No.12, pp.1970-1974. Zbl0778.93102
- Hahn W. (1967) Stability of Motion. -Berlin: Springer. Zbl0189.38503
- Hammami M.A. (1993): Stabilization of a class of nonlinear systems using an observer design. - Proc. 32nd IEEE Conf. Decision and Control, San Antonio, Texas, Vol.3, pp.1954-1959.
- Hammami M.A. and Jerbi H. (1994): On the stabilization of homogeneous cubic vector fields in the plane. - Appl. Math. Lett., Vol.7, No.4,pp.95-99. Zbl0804.93040
- Jerbi H. (1994): Quelques resultats sur la stabilization des systèmes non lineaires par estimation et retour d'etat. -Ph.D. Thesis, University of Metz, France.
- Massera J.L. (1956): Contribution to stability theory. -Annals of Mathematics, Vol.64, pp.182-206. Zbl0070.31003
- Seibert P. and Suarez R. (1990): Global stabilization of nonlinear cascade systems. - Syst. Contr. Lett., Vol.14, pp.347-352. Zbl0699.93073
- Vidyasagar M. (1980): On the stabilization of nonlinear systems using state detection. - IEEE Trans. Automat. Contr., Vol.AC-25, pp.504-509. Zbl0429.93046

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.