Separation principle for nonlinear systems: a bilinear approach

Mohamed Hammami; Hamadi Jerbi

International Journal of Applied Mathematics and Computer Science (2001)

  • Volume: 11, Issue: 2, page 481-492
  • ISSN: 1641-876X

Abstract

top
In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.

How to cite

top

Hammami, Mohamed, and Jerbi, Hamadi. "Separation principle for nonlinear systems: a bilinear approach." International Journal of Applied Mathematics and Computer Science 11.2 (2001): 481-492. <http://eudml.org/doc/207516>.

@article{Hammami2001,
abstract = {In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.},
author = {Hammami, Mohamed, Jerbi, Hamadi},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {bilinear systems; observer; stabilization; nonlinear systems; bilinear system; state observer; separation principle},
language = {eng},
number = {2},
pages = {481-492},
title = {Separation principle for nonlinear systems: a bilinear approach},
url = {http://eudml.org/doc/207516},
volume = {11},
year = {2001},
}

TY - JOUR
AU - Hammami, Mohamed
AU - Jerbi, Hamadi
TI - Separation principle for nonlinear systems: a bilinear approach
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 2
SP - 481
EP - 492
AB - In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.
LA - eng
KW - bilinear systems; observer; stabilization; nonlinear systems; bilinear system; state observer; separation principle
UR - http://eudml.org/doc/207516
ER -

References

top
  1. Baccioti A. and Boieri P. (1991): A characterization of single input planar bilinear systems which admit a smooth stabilizer. -Syst. Contr. Lett., Vol.16, pp.139-143. Zbl0732.93067
  2. Boothby W. and Marino R. (1989): Feedback stabilization of planar nonlinear systems. - Syst. Contr. Lett., Vol.12, pp.87-92. Zbl0684.93062
  3. Bornard G., Couenne N. and Celle F. (1989): Regularly persistent observers for bilinear systems. - Berlin: Springer, Contr. Inform. Sci., pp.130-140. Zbl0676.93031
  4. Chabour R. and Hammouri H. (1993): Stabilization of planar bilinear systems using an observer configuration. - Appl. Math. Lett., Vol.6, pp.7-10. Zbl0774.93014
  5. Chabour R., Sallet G. and Vivalda J.C. (1996): Stabilization of nonlinear two dimensional systems: A bilinear approach. -Math. Contr. Signal Syst., pp.224-246. Zbl0797.93038
  6. Chabour R. and Vivalda J.C. (1991): Stabilisation des systèmes bilineaires dans le plan par une commande non reguliere. - Proc. European Control Conference, ECC'91, Grenoble, France, pp.485-487. 
  7. Dayawansa W.P., Martin C.F. and Knowles G. (1990): Asymptotic stabilization of a class smooth two-dimensional systems. - SIAM J. Contr. Optim., Vol.28, pp.1321-1349. Zbl0731.93076
  8. Gauthier J.P. and Kupka I. (1992): A separation principle for bilinear systems with dissipative drift. - IEEE Trans. Automat. Contr., Vol. AC-37, No.12, pp.1970-1974. Zbl0778.93102
  9. Hahn W. (1967) Stability of Motion. -Berlin: Springer. Zbl0189.38503
  10. Hammami M.A. (1993): Stabilization of a class of nonlinear systems using an observer design. - Proc. 32nd IEEE Conf. Decision and Control, San Antonio, Texas, Vol.3, pp.1954-1959. 
  11. Hammami M.A. and Jerbi H. (1994): On the stabilization of homogeneous cubic vector fields in the plane. - Appl. Math. Lett., Vol.7, No.4,pp.95-99. Zbl0804.93040
  12. Jerbi H. (1994): Quelques resultats sur la stabilization des systèmes non lineaires par estimation et retour d'etat. -Ph.D. Thesis, University of Metz, France. 
  13. Massera J.L. (1956): Contribution to stability theory. -Annals of Mathematics, Vol.64, pp.182-206. Zbl0070.31003
  14. Seibert P. and Suarez R. (1990): Global stabilization of nonlinear cascade systems. - Syst. Contr. Lett., Vol.14, pp.347-352. Zbl0699.93073
  15. Vidyasagar M. (1980): On the stabilization of nonlinear systems using state detection. - IEEE Trans. Automat. Contr., Vol.AC-25, pp.504-509. Zbl0429.93046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.