Rough relation properties
Maria Nicoletti; Joaquim Uchoa; Margarete Baptistini
International Journal of Applied Mathematics and Computer Science (2001)
- Volume: 11, Issue: 3, page 621-635
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aasheim O.T. and Solheim H.G. (1996): Rough set as a framework for data mining. — Project Report of the Knowledge Systems Group, Faculty of Computer Systems and Telematics, Norwegian University of Science and Technology, Trondheim, Norway, p.147.
- Berztiss A.T. (1975): Data Structures — Theory and Practice, 2nd Ed. — New York: Academic Press. Zbl0317.68003
- Deogun J.S., Raghavan V.V., Sarkar A. and Sever H. (1997): Data mining: Research trends, challenges, and applications, In: Rough Sets and Data Mining: Analysis of Imprecise Data (T.Y. Lin and N. Cercone, Eds.). — Boston: Kluwer Academic, pp.9–45.
- Grzymala-Busse J.W. (1986): On the reduction of knowledge representation systems, Proc. 6th Int. Workshop Expert Systems and Their Applications, Avignon, France, Vol.1, pp.463–478.
- Grzymala-Busse J.W. (1988): Knowledge acquisition under uncertainty — A rough set approach. — J. Intell. Robot. Syst., Vol.1, No.1, pp.3–16.
- Grzymala-Busse J.W. (1992): LERS — A system for learning from examples based on rough sets, In: Intelligent Decision Support Handbook of Applications and Advances of the Rough Sets Theory. — Dordrecht: Kluwer, pp.3–18.
- Grzymala-Busse J.W. and Mithal S. (1991): On the choice of the best test for attribute dependency in programs for learning from examples. — Int. J. Softw. Eng. Knowl. Eng., Vol.1, No.4, pp.413–438.
- Jelonek J., Krawiec K. and Slowinski R. (1994): Rough set reduction of attributes and their domains for neural networks. — Comput. Intell., Vol.2, No.5, pp.1–10.
- Klir G.J. and Yuan B. (1995): Fuzzy Sets and Fuzzy Logic — Theory and Applications. — Upper Saddle River: Prentice Hall. Zbl0915.03001
- Mrózek A. (1989): Rough sets and dependency analysis among attributes in computer implementations of expert inference models. — Int. J. Man-Machine Stud., Vol.30, pp.457–473. Zbl0668.68094
- Mrózek A. (1992): A new method for discovering rules from examples in expert systems. — Int. J. Man-Machine Stud., Vol.36, pp.127–143.
- Nicoletti M.C. and Uchoa J.Q. (1997): The use of membership functions for characterizing the main concepts of rough set theory. — Techn. Rep. No.005/97, Departamento de Computacao-Universidade Federal de Sao Carlos, p. 26, (in Portugese).
- Ohrn A. (1993): Rough logic control: A new approach to automatic control? — Techn. Rep., Trondheim University, Norway, p.44.
- Orlowska E. and Pawlak Z. (1984): Expressive power of knowledge representation systems. — Int. J. Man-Machine Stud., Vol.20, pp.485–500. Zbl0541.68070
- Pawlak Z. (1981): Rough relations. — Techn. Rep. No.435, Institute of Computer Science, Polish Academy of Sciences, Warsaw. Zbl0516.04001
- Pawlak Z. (1982): Rough sets. — Int. J. Inf. Comp. Sci., Vol.11, No.5, pp.341–356. Zbl0501.68053
- Pawlak Z. (1984): Rough classification. — Int. J. Man-Machine Stud., Vol.20, pp.469–483. Zbl0541.68077
- Pawlak Z. (1985): On Learning — A Rough Set Approach, In: Lecture Notes in Computer Science (A. Skowron, Ed.). — Berlin: Springer, Vol.28, pp.197–227. Zbl0602.68078
- Pawlak Z. (1994): Hard and soft sets, In: Rough Sets, Fuzzy Sets and Knowledge Discovery (W.P. Ziarko, Ed.). — Berlin: Springer, pp.130–135. Zbl0819.04008
- Pawlak Z. (1997): Rough real functions and rough controllers, In: Rough Sets and Data Mining: Analysis for Imprecise Data (T.Y. Lin and N. Cercone, Eds.). — Boston: Kluwer. Zbl0866.93063
- Pawlak Z. and Skowron R. (1994): Rough membership functions, In: Advances in the Dempster-Shafer Theory of Evidence (R. Yager, M. Fedrizzi and J. Kacprzyk, Eds.). — New York: Wiley, pp.251–271.
- Pawlak Z., Wong S.K.M. and Ziarko W. (1988): Rough sets: Probabilistic versus deterministic approach. — Int. J. Man-Machine Stud., Vol.29, pp.81–95. Zbl0663.68094
- Skowron A. and Grzymala-Busse J. (1994): From rough set theory to evidence theory, In: Advances in the Dempster-Shafer Theory of Evidence (R. Yager, M. Fedrizzi and J. Kacprzyk, Eds.). — New York: Wiley, pp.193–236.
- Słowiński R. (1995): Rough set approach to decision analysis. — AI Expert (March), pp.19–25.
- Szladow A. and Ziarko W. (1993): Rough sets: Working with imperfect data. — AI Expert (July), pp.36–41.
- Wong S.K.M. and Lingras P. (1989): The compatibility view of Dempster-Shafer theory using the concept of rough set. — Proc. 4th Int. Symp. for Intelligent Systems, Charlotte, Vol.4, pp.33–42.
- Wong S.K.M., Ziarko W. and Ye R.L. (1986): Comparison of rough set and statistical methods in inductive learning. — Int. J. Man-Machine Stud., Vol.24, pp.53–72. Zbl0634.68088
- Wygralak M. (1989): Rough sets and fuzzy sets — Some remarks on interrelations. — Fuzzy Sets Syst., Vol.29, pp.241–243. Zbl0664.04010
- Ziarko W. (1991): The discovery, analysis, and representation of data dependencies in databases, In: Knowledge Discovery in Databases (G. Piatestsky-Shapiro and W. Frawley, Eds.). — Menlo Park: AAI Press/MIT Press, pp.195–209.