Identification of a quasilinear parabolic equation from final data
Luis a. Fernández; Cecilia Pola
International Journal of Applied Mathematics and Computer Science (2001)
- Volume: 11, Issue: 4, page 859-879
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topFernández, Luis a., and Pola, Cecilia. "Identification of a quasilinear parabolic equation from final data." International Journal of Applied Mathematics and Computer Science 11.4 (2001): 859-879. <http://eudml.org/doc/207535>.
@article{Fernández2001,
abstract = {We study the identification of the nonlinearities A,(→)b and c appearing in the quasilinear parabolic equation y\_t − div(A(y)∇y + (→)b(y)) + c(y) = u inΩ × (0,T), assuming that the solution of an associated boundary value problem is known at the terminal time, y(x,T), over a (probably small) subset of Ω, for each source term u. Our work can be divided into two parts. Firstly, the uniqueness of A,(→)b and c is proved under appropriate assumptions. Secondly, we consider a finite-dimensional optimization problem that allows for the reconstruction of the nonlinearities. Some numerical results in the one-dimensional case are presented, even in the case of noisy data.},
author = {Fernández, Luis a., Pola, Cecilia},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {quasilinear parabolic equation; inverse problem; parameter estimation; identification},
language = {eng},
number = {4},
pages = {859-879},
title = {Identification of a quasilinear parabolic equation from final data},
url = {http://eudml.org/doc/207535},
volume = {11},
year = {2001},
}
TY - JOUR
AU - Fernández, Luis a.
AU - Pola, Cecilia
TI - Identification of a quasilinear parabolic equation from final data
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 4
SP - 859
EP - 879
AB - We study the identification of the nonlinearities A,(→)b and c appearing in the quasilinear parabolic equation y_t − div(A(y)∇y + (→)b(y)) + c(y) = u inΩ × (0,T), assuming that the solution of an associated boundary value problem is known at the terminal time, y(x,T), over a (probably small) subset of Ω, for each source term u. Our work can be divided into two parts. Firstly, the uniqueness of A,(→)b and c is proved under appropriate assumptions. Secondly, we consider a finite-dimensional optimization problem that allows for the reconstruction of the nonlinearities. Some numerical results in the one-dimensional case are presented, even in the case of noisy data.
LA - eng
KW - quasilinear parabolic equation; inverse problem; parameter estimation; identification
UR - http://eudml.org/doc/207535
ER -
References
top- Banks H.T. and Kunisch K. (1989): Estimation Techniques for Distributed Parameter Systems. - Boston: Birkhauser. Zbl0695.93020
- Barbu V. and Kunisch K. (1995): Identification of nonlinear parabolic equations. - Contr. Theory Adv. Tech., Vol.10, No.4, pp.1959-1980.
- Chavent G. and Lemonnier P. (1974): Identification de la non-linéarite d'une équation parabolique quasilinéaire. - Appl. Math. Optim., Vol.1, No.2, pp.121-162. Zbl0291.35049
- Fernández L.A. and Zuazua E. (1999): Approximate controllability for the semilinear heat equation involving gradient terms. - J. Optim. Th. Appl., Vol.101, No.2, pp.307-328. Zbl0952.49003
- Gilbarg D. and Trudinger N.S. (1977): Elliptic Partial Differential Equations of Second Order. - Berlin: Springer. Zbl0361.35003
- Hanke M. and Scherzer O. (1999): Error analysis of an equation error method for the identification of the diffusion coefficientin a quasi-linear parabolic differential equation. - SIAM J.Appl. Math., Vol.59, No.3, pp.1012-1027. Zbl0928.35198
- Kärkkäinen T. (1996): A linearization technique and error estimates for distributed parameter identification in quasilinear problems. - Numer. Funct. Anal. Optim., Vol.17, No.3-4, pp.345-364. Zbl0858.65127
- Kunisch K. and Zou J. (1998): Iterative choices of regularization parameters in linear inverse problems. - Inverse Problems, Vol.14, No.5, pp.1247-1264. Zbl0917.65053
- Ladyzhenskaya O.A., Solonnikov V.A. and Ural'tseva N.N.(1968): Linear and Quasilinear Equations of Parabolic Type.- Rhode Island: A.M.S.
- Lions J.L. (1971): Optimal Control of Systems Governed by Partial Differential Equations. - Berlin: Springer. Zbl0203.09001
- Lunardi A. and Vespri V. (1991): Holder regularity invariational parabolic non-homogeneous equations. - J. Diff. Eqns., Vol.94, No.1, pp.1-40. Zbl0794.35021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.