Spatial compensation of boundary disturbances by boundary actuators
Larbi Afifi; Abdelhakim Chafiai; Abdelhaq El Jai
International Journal of Applied Mathematics and Computer Science (2001)
- Volume: 11, Issue: 4, page 899-920
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topAfifi, Larbi, Chafiai, Abdelhakim, and El Jai, Abdelhaq. "Spatial compensation of boundary disturbances by boundary actuators." International Journal of Applied Mathematics and Computer Science 11.4 (2001): 899-920. <http://eudml.org/doc/207537>.
@article{Afifi2001,
abstract = {In this paper we show how to find convenient boundary actuators, termed boundary efficient actuators, ensuring finite-time space compensation of any boundary disturbance. This is the so-called remediability problem. Then we study the relationship between this remediability notion and controllability by boundary actuators, and hence the relationship between boundary strategic and boundary efficient actuators. We also determine the set of boundary remediable disturbances, and for a boundary disturbance, we give the optimal control ensuring its compensation.},
author = {Afifi, Larbi, Chafiai, Abdelhakim, El Jai, Abdelhaq},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {distributed-parameter systems; sensors; controllability; actuators; remediability; boundary actuators; optimal control},
language = {eng},
number = {4},
pages = {899-920},
title = {Spatial compensation of boundary disturbances by boundary actuators},
url = {http://eudml.org/doc/207537},
volume = {11},
year = {2001},
}
TY - JOUR
AU - Afifi, Larbi
AU - Chafiai, Abdelhakim
AU - El Jai, Abdelhaq
TI - Spatial compensation of boundary disturbances by boundary actuators
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 4
SP - 899
EP - 920
AB - In this paper we show how to find convenient boundary actuators, termed boundary efficient actuators, ensuring finite-time space compensation of any boundary disturbance. This is the so-called remediability problem. Then we study the relationship between this remediability notion and controllability by boundary actuators, and hence the relationship between boundary strategic and boundary efficient actuators. We also determine the set of boundary remediable disturbances, and for a boundary disturbance, we give the optimal control ensuring its compensation.
LA - eng
KW - distributed-parameter systems; sensors; controllability; actuators; remediability; boundary actuators; optimal control
UR - http://eudml.org/doc/207537
ER -
References
top- Afifi L., Chafiai A. and El Jai A. (1998): Compensation spatiale en temps fini dans les systèmes distribués. — L.T.S. Université de Perpignan, Rapport Interne N 14/98.
- Afifi L., Chafiai A. and El Jai A. (1999): Regionally efficient and strategic actuators. — Int. J. Syst. Sci. (to appear). Zbl1013.93029
- Afifi L., Chafiai A. and El Jai A. (2000): Remédiabilité régionale dans les systèmes distribués discrets. — Les cahiers de la recherche, Université Hassan II-Ain Chock, Morocco, Vol.II, No.1, pp.71–91.
- Berrahmoune L. (1984): Localisation d’actionneurs pour la contrôlabilité de systèmes paraboliques et hyperboliques. Applications par dualité a la localisation de capteurs. — Ph.D. Thesis, Faculté des Sciences, Rabat, Morocco.
- Curtain R.F. and Pritchard A.J. (1978): Infinite Dimensional Linear Systems Theory. — Berlin: Springer.
- El Jai A. (1991): Distributed systems analysis via sensors and actuators. — Int. J. Sens. Actuat., Vol.29, No.1, pp.1–11.
- El Jai A. and Pritchard A.J. (1988): Sensors and Actuators in Distributed Systems Analysis. — Paris: Wiley. Zbl0637.93001
- Lions J.L. (1988): Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués. — Paris: Masson. Zbl0653.93002
- Lions J.L. and Magenes E. (1968): Problèmes aux Limites non Homogènes et Applications. — Paris: Dunod. Zbl0165.10801
- Malabre M. and Rabah R. (1993): Structure at infinity, model matching and disturbance rejection for linear systems with delays. — Kybernetika, Vol.29, No.5, pp.485–498. Zbl0805.93008
- Necas J. (1967): Les méthodes directes en théorie des équations elliptiques. — Prague: Ed. Acad. Tchécoslovaque des Sciences.
- Otsuka N. (1991): Simultaneous decoupling and disturbance rejection problems for infinite dimensional systems. — IMA J. Math. Contr. Inf., Vol.8, pp.165–178. Zbl0759.93019
- Pandolfi L. (1986): Disturbance decoupling and invariant subspaces for delay systems. — Appl. Math. Optim., Vol.14, pp.55–72. Zbl0587.93039
- Rabah R. and Malabre M. (1997): A note on decoupling for linear infinite dimensional systems. — Proc. 4-th IFAC Conf. System Structure and Control, Bucharest, Romania, pp.87–83.
- Senamel O., Rabah R. and Lafy J.F. (1995): Decoupling without prediction of linear systems with delays: A structural approach. — Syst. Contr. Lett., Vol.25, pp.387–395.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.