Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach

Luciano Pandolfi

International Journal of Applied Mathematics and Computer Science (2001)

  • Volume: 11, Issue: 6, page 1249-1260
  • ISSN: 1641-876X

Abstract

top
We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.

How to cite

top

Pandolfi, Luciano. "Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach." International Journal of Applied Mathematics and Computer Science 11.6 (2001): 1249-1260. <http://eudml.org/doc/207553>.

@article{Pandolfi2001,
abstract = {We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.},
author = {Pandolfi, Luciano},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {dissipative systems; linear distributed systems; Popov function; outer factor; factorization; spectral factorization},
language = {eng},
number = {6},
pages = {1249-1260},
title = {Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach},
url = {http://eudml.org/doc/207553},
volume = {11},
year = {2001},
}

TY - JOUR
AU - Pandolfi, Luciano
TI - Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 6
SP - 1249
EP - 1260
AB - We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.
LA - eng
KW - dissipative systems; linear distributed systems; Popov function; outer factor; factorization; spectral factorization
UR - http://eudml.org/doc/207553
ER -

References

top
  1. Anderson B.D.O. (1967): A system theory criterion for positive real matrices. — SIAM J. Contr., Vol.5, pp.171–182. Zbl0158.03701
  2. Anderson B.D.O. and Vongpanitlered S. (1973): Network Analysis and Synthesis: A Modern Systems Theory Approach. — Englewood Cliffs, N.J: Prentice–Hall. 
  3. Balakrishnan A.V. (1995): On a generalization of the Kalman–Yakubovich Lemma. — Appl. Math. Optim., Vol.31, No.2, pp.177–187. Zbl0821.47031
  4. Callier F.M. and Winkin J. (1990): On spectral factorization and LQ-optimal regulation for multivariable distributed systems. — Int. J. Contr., Vol.52, No.1, pp.55–75. Zbl0713.93024
  5. Callier F.M. and Winkin J. (1992): LQ-optimal control of infinite-dimensional systems by spectral factorization. — Automatica, Vol.28, No.4, pp.757–770. Zbl0776.49023
  6. Callier F.M. and Winkin J. (1999): The spectral factorization problem for multivariable distributed parameter systems. — Int. Eqns. Oper. Theory, Vol.34, No.3, pp.270–292. Zbl0933.93042
  7. Fattorini O. (1968): Boundary control systems. — SIAM J. Contr. Optim., Vol.6, pp.349–385. Zbl0164.10902
  8. Francis B.A., (1987): A Course in H∞ Control Theory. — Berlin: Springer-Verlag. 
  9. Garnett J.B., (1981): Bounded Analytic Functions. — New York: Academic Press. Zbl0469.30024
  10. Kalman R.E. (1963): Lyapunov functions for the problem of Lur’e in automatic control. — Proc. Nat. Acad. Sci., USA, Vol.49, pp.201–205. Zbl0113.07701
  11. Lasiecka I. and Triggiani R. (2000): Control theory for partial differential equations. — Encyclopaedia of Mathematics and its Applications, Vols. 74 and 75, Cambridge: Cambridge University Press. Zbl0942.93001
  12. Louis J-Cl. and Wexler D. (1991): The Hilbert space regulator problem and operator Riccati equation under stabilizability. — Annales de la Soc. Scient. de Bruxelles, Vol.105, No.4, pp.137–165. Zbl0771.47026
  13. Nikolski N. (1982): Lectures on the Shift Operator. — Berlin: Springer-Verlag. 
  14. Pandolfi L. (1994): From singular to regular control systems. — Proc. Conf. Control of Partial Differential Equations, New York: M. Dekker, pp.153–165. Zbl0815.93045
  15. Pandolfi L. (1995): The standard regulator problem for systems with input delays: an approach through singular control theory. — Appl. Math. Optim., Vol.31, No.2, pp.119–136. Pandolfi L. (1997): The Kalman–Yakubovich–Popov Theorem: an overview and new results for hyperbolic control systems. — Nonlin. Anal., Vol.30, No.2, pp.735–745. 
  16. Pandolfi L. (1998): Dissipativity and Lur’e problem for parabolic boundary control systems. — SIAM J. Contr. Optim., Vol.36, No.6, pp.2061–2081. Zbl0913.43001
  17. Pandolfi, L. (1999a): The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic boundary control systems. — Int. Eqns. Oper. Theory, Vol.34, pp.478–493. Zbl0941.93046
  18. Pandolfi L. (1999b): Recent results on the Kalman-Popov-Yakubovich problem. — Proc. Int. Conf. Mathematics and its Applications, Yogyakarta, Indonesia, pp.47–60. 
  19. Rosenblum M. and Rovnyak J. (1985): Hardy Classes and Operator Theory. — New York: Oxford U.P. Zbl0586.47020
  20. Riesz F. and Sz-Nagy B. (1955): Functional Analysis. — New York: F. Ungar. 
  21. Yakubovich V.A. (1973): The frequency theorem in control theory. — Siberian Math. J., Vol.14, pp.384-419. 
  22. Youla D.C. (1961): On the factorization of rational matrices. — IRE Trans. Inf. Theory, Vol.IT–7, pp.172–189. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.