Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach
International Journal of Applied Mathematics and Computer Science (2001)
- Volume: 11, Issue: 6, page 1249-1260
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topPandolfi, Luciano. "Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach." International Journal of Applied Mathematics and Computer Science 11.6 (2001): 1249-1260. <http://eudml.org/doc/207553>.
@article{Pandolfi2001,
abstract = {We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.},
author = {Pandolfi, Luciano},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {dissipative systems; linear distributed systems; Popov function; outer factor; factorization; spectral factorization},
language = {eng},
number = {6},
pages = {1249-1260},
title = {Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach},
url = {http://eudml.org/doc/207553},
volume = {11},
year = {2001},
}
TY - JOUR
AU - Pandolfi, Luciano
TI - Factorization of the Popov function of a multivariable linear distributed parameter system in the non-coercive case: a penalization approach
JO - International Journal of Applied Mathematics and Computer Science
PY - 2001
VL - 11
IS - 6
SP - 1249
EP - 1260
AB - We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.
LA - eng
KW - dissipative systems; linear distributed systems; Popov function; outer factor; factorization; spectral factorization
UR - http://eudml.org/doc/207553
ER -
References
top- Anderson B.D.O. (1967): A system theory criterion for positive real matrices. — SIAM J. Contr., Vol.5, pp.171–182. Zbl0158.03701
- Anderson B.D.O. and Vongpanitlered S. (1973): Network Analysis and Synthesis: A Modern Systems Theory Approach. — Englewood Cliffs, N.J: Prentice–Hall.
- Balakrishnan A.V. (1995): On a generalization of the Kalman–Yakubovich Lemma. — Appl. Math. Optim., Vol.31, No.2, pp.177–187. Zbl0821.47031
- Callier F.M. and Winkin J. (1990): On spectral factorization and LQ-optimal regulation for multivariable distributed systems. — Int. J. Contr., Vol.52, No.1, pp.55–75. Zbl0713.93024
- Callier F.M. and Winkin J. (1992): LQ-optimal control of infinite-dimensional systems by spectral factorization. — Automatica, Vol.28, No.4, pp.757–770. Zbl0776.49023
- Callier F.M. and Winkin J. (1999): The spectral factorization problem for multivariable distributed parameter systems. — Int. Eqns. Oper. Theory, Vol.34, No.3, pp.270–292. Zbl0933.93042
- Fattorini O. (1968): Boundary control systems. — SIAM J. Contr. Optim., Vol.6, pp.349–385. Zbl0164.10902
- Francis B.A., (1987): A Course in H∞ Control Theory. — Berlin: Springer-Verlag.
- Garnett J.B., (1981): Bounded Analytic Functions. — New York: Academic Press. Zbl0469.30024
- Kalman R.E. (1963): Lyapunov functions for the problem of Lur’e in automatic control. — Proc. Nat. Acad. Sci., USA, Vol.49, pp.201–205. Zbl0113.07701
- Lasiecka I. and Triggiani R. (2000): Control theory for partial differential equations. — Encyclopaedia of Mathematics and its Applications, Vols. 74 and 75, Cambridge: Cambridge University Press. Zbl0942.93001
- Louis J-Cl. and Wexler D. (1991): The Hilbert space regulator problem and operator Riccati equation under stabilizability. — Annales de la Soc. Scient. de Bruxelles, Vol.105, No.4, pp.137–165. Zbl0771.47026
- Nikolski N. (1982): Lectures on the Shift Operator. — Berlin: Springer-Verlag.
- Pandolfi L. (1994): From singular to regular control systems. — Proc. Conf. Control of Partial Differential Equations, New York: M. Dekker, pp.153–165. Zbl0815.93045
- Pandolfi L. (1995): The standard regulator problem for systems with input delays: an approach through singular control theory. — Appl. Math. Optim., Vol.31, No.2, pp.119–136. Pandolfi L. (1997): The Kalman–Yakubovich–Popov Theorem: an overview and new results for hyperbolic control systems. — Nonlin. Anal., Vol.30, No.2, pp.735–745.
- Pandolfi L. (1998): Dissipativity and Lur’e problem for parabolic boundary control systems. — SIAM J. Contr. Optim., Vol.36, No.6, pp.2061–2081. Zbl0913.43001
- Pandolfi, L. (1999a): The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic boundary control systems. — Int. Eqns. Oper. Theory, Vol.34, pp.478–493. Zbl0941.93046
- Pandolfi L. (1999b): Recent results on the Kalman-Popov-Yakubovich problem. — Proc. Int. Conf. Mathematics and its Applications, Yogyakarta, Indonesia, pp.47–60.
- Rosenblum M. and Rovnyak J. (1985): Hardy Classes and Operator Theory. — New York: Oxford U.P. Zbl0586.47020
- Riesz F. and Sz-Nagy B. (1955): Functional Analysis. — New York: F. Ungar.
- Yakubovich V.A. (1973): The frequency theorem in control theory. — Siberian Math. J., Vol.14, pp.384-419.
- Youla D.C. (1961): On the factorization of rational matrices. — IRE Trans. Inf. Theory, Vol.IT–7, pp.172–189.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.