Population genetics models for the statistics of DNA samples under different demographic scenarios - Maximum likelihood versus approximate methods

Andrzej Polański; Marek Kimmel

International Journal of Applied Mathematics and Computer Science (2003)

  • Volume: 13, Issue: 3, page 347-355
  • ISSN: 1641-876X

Abstract

top
The paper reviews the basic mathematical methodology of modeling neutral genetic evolution, including the statistics of the Fisher-Wright process, models of mutation and the coalescence method under various demographic scenarios. The basic approach is the use of maximum likelihood techniques. However, due to computational problems, intuitive or approximate methods are also of great importance.

How to cite

top

Polański, Andrzej, and Kimmel, Marek. "Population genetics models for the statistics of DNA samples under different demographic scenarios - Maximum likelihood versus approximate methods." International Journal of Applied Mathematics and Computer Science 13.3 (2003): 347-355. <http://eudml.org/doc/207649>.

@article{Polański2003,
abstract = {The paper reviews the basic mathematical methodology of modeling neutral genetic evolution, including the statistics of the Fisher-Wright process, models of mutation and the coalescence method under various demographic scenarios. The basic approach is the use of maximum likelihood techniques. However, due to computational problems, intuitive or approximate methods are also of great importance.},
author = {Polański, Andrzej, Kimmel, Marek},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {coalescence; DNA samples; demography},
language = {eng},
number = {3},
pages = {347-355},
title = {Population genetics models for the statistics of DNA samples under different demographic scenarios - Maximum likelihood versus approximate methods},
url = {http://eudml.org/doc/207649},
volume = {13},
year = {2003},
}

TY - JOUR
AU - Polański, Andrzej
AU - Kimmel, Marek
TI - Population genetics models for the statistics of DNA samples under different demographic scenarios - Maximum likelihood versus approximate methods
JO - International Journal of Applied Mathematics and Computer Science
PY - 2003
VL - 13
IS - 3
SP - 347
EP - 355
AB - The paper reviews the basic mathematical methodology of modeling neutral genetic evolution, including the statistics of the Fisher-Wright process, models of mutation and the coalescence method under various demographic scenarios. The basic approach is the use of maximum likelihood techniques. However, due to computational problems, intuitive or approximate methods are also of great importance.
LA - eng
KW - coalescence; DNA samples; demography
UR - http://eudml.org/doc/207649
ER -

References

top
  1. Bahlo M. and Griffiths R.C. (2000): Inference from gene trees in a subdivided population. — Theor. Popul. Biol., Vol. 57, No. 2, pp. 79–95. Zbl0984.92020
  2. Beerli P. and Felsenstein J. (2001): Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations using a coalescent approach. — Proc. Natl. Acad. Sci. USA, Vol. 98, No. 8, pp. 4563–4568. Zbl0993.62096
  3. Bellman R., Kalaba R.E. and Lockett J.A. (1966): Numerical Inversion of the Laplace Transform. — New York: Elsevier. Zbl0147.14003
  4. Cann R.L., Stoneking M. and Wilson A.C. (1987): Mitochondrial DNA and human evolution. — Nature, Vol. 325, No. 6099, pp. 31–36. 
  5. Cox D.R. and Oakes D. (1984): Analysis of Survival Data. — London: Chapman and Hall. 
  6. Ewens W.J. (1972): The sampling theory for selectively neutral alleles. — Theor. Popul. Biol., Vol. 3, No. 2, pp. 87–112. Zbl0245.92009
  7. Felsenstein J. (1981): Evolutionary trees from DNA sequences: A maximum likelihood approach. — J. Mol. Evol., Vol. 17., No. 6, pp. 368–376. 
  8. Felsenstein J. (1992): Estimating effective population size from samples of sequences, inefficiency of pairwise and segregating sites as compared to phylogenetic estimates. — Genet. Res., Vol. 59, No. 2, pp. 139–147. 
  9. Fu Y.X. and Li W.H. (1993a): Maximum likelihood estimation of population parameters. — Genetics, Vol. 134, No. 4, pp. 1261–1270. 
  10. Fu Y.X. and Li W.H. (1993b): Statistical test of neutrality of mutations. — Genetics, Vol. 133, No. 3, pp. 693–709. 
  11. Griffiths R.C. (1989): Genealogical tree probabilities in the infinitely many sites model. — J. Math. Biol., Vol. 27, No. 6, pp. 667–680. Zbl0716.92012
  12. Griffiths R.C. and Tavare S. (1994): Sampling theory for neutral alleles in a varying environment. — Proc. Roy. Stat. Soc. B., Vol. 344, No. 1310, pp. 403–410. 
  13. Griffiths R.C. and Tavare S. (1995): Unrooted genealogical tree probabilities in the infinitely many sites model. — Math. Biosci., Vol. 127, No. 1, pp. 77–98. Zbl0818.92010
  14. Hastings W.K. (1970): Monte Carlo sampling method using Markov chains and their applications. — Biometrica, Vol. 57, pp. 1317–1340. 
  15. Hudson R.R. (1990): Gene genealogies and the coalescent process, In: Oxford Surveys in Evolutionary Biology (D. Futuyama and J. Antonovics, Eds.). — New York: Oxford University Press, Vol. 7, pp. 1–44. 
  16. Kaplan N.L., Hill W.G. and Weir B.S. (1995): Likelihood methods for locating disease genes in nonequilibrium populations. — Am. J. Hum. Genet., Vol. 56, No. 1, 18–32. 
  17. Kimmel M., Chakraborty R., King J.P., Bamshad M., Wattkins W.S. and Jorde L.B. (1998): Signatures of population expansion in microsatellite repeat data. — Genetics, Vol. 148, No. 4, pp. 1921–1930. 
  18. King J.P., Kimmel M. and Chakraborty R. (2000): A power analysis of microsatlelite-based statistics for inferring past population growth. — Molec. Biol. Evol., Vol. 17, No. 12, pp. 1859–1868. 
  19. Kingman J.F.C. (1982): The coalescent. — Stoch. Proc. Appl., Vol. 13, pp. 235–248. Zbl0491.60076
  20. Klein J. and Takahata N. (2002): Where Do We Come from? The Molecular Evidence for Human Descent. — Berlin: Springer. 
  21. Kuhner M.K., Yamato J. and Felsenstein J. (1995): Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. — Genetics, Vol. 140, No. 4, pp. 1421–1430. 
  22. Kuhner M.K., Yamato J. and Felsenstein J. (1998): Maximum likelihood estimation of population growth rates based on coalescent. — Genetics, Vol. 149, No. 1, pp. 429–434. 
  23. Li W.H. (1997): Molecular Evolution. — Sunderland: Sinauer Associates. 
  24. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E. (1953): Equations of state calculations by fast computing machines. — J. Chem. Phys., Vol. 21, pp. 1087–1092. 
  25. Nordborg M. (2001): Coalescence theory, In: Handbook of Statistical Genetics (D.J. Balding, M.J. Bishop and C. Cannings, Eds.). — New York: Wiley, pp. 153–177. 
  26. Pankratz V.S. (1998): Stochastic models and linkage disequilibrium: Estimating the recombination coefficient. — Ph.D. thesis, Rice University, USA. 
  27. Polanski A., Kimmel M. and Chakraborty R. (1998): Application of a time-dependent coalescent process for inferring the history of population changes from DNA sequence data. — Proc. Natl. Acad. Sci. USA, Vol. 95, No. 10, pp. 5456–5461. Zbl0906.92023
  28. Pybus O.G., Rambaut A. and Harvey P.H. (2000): An integrated framework for the inference of viral population history from reconstructed genealogies. — Genetics, Vol. 155, No. 3, pp. 1429–1437. 
  29. Relethford J. (2001): Genetics and the Search for Modern Human Origins. — New York: Wiley. 
  30. Rogers A.R. and Harpending H. (1992): Population growth makes waves in the distribution of pairwise genetic differences. — Molec. Biol. Evol., Vol. 9., No. 3, pp. 552–569. 
  31. Sabeti P.C., Reich D.E., Higgins J.M., Levine H.Z.P., Richter D.J., Schaffner S.F., Gabriel S.B., Platko J.V., Patterson N.J., McDonald G.J., Ackerman H.C., Campbell S.J., Altshuler D., Cooper R., Kwiatkowski D., Ward R. and Lander E.S. (2002): Detecting recent positive selection in the human genome from haplotype structure. — Nature, Vol. 419, No. 6909, pp. 832–837. 
  32. Serre J.R., Simon-Bouy B., Monet E., Jaume-Roig B., Balassopoulou A., Schwartz M., Taillandier A., Boue J. and Boue A. (1990): Studies of RFLP closely linked to the cystic fibrosis locus throughout Europe lead to new considerations in populations genetics. — Hum. Genet., Vol. 84, No. 5, pp. 449–54. 
  33. Swofford D.L. and Olsen G.J. (1990): Phylogeny reconstruction, In: Molecular Systematics (D.M. Hillis and C. Moritz, Eds.). — Sunderland: Sinauer Associates, pp. 411–501. 
  34. Tajima F. (1989): Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. — Genetics, Vol. 123, No. 5, pp. 585–595. 
  35. Tavare S. (1997): Ancestral inference from DNA sequence data, In: Case Studies in Mathematical Modeling in Modeling: Ecology, Physiology, and Cell Biology (H.G. Othmer, F.R. Adler, M.A. Lewis, J. Dallon, Eds.). — New York: Prentice Hall, pp. 81–96. 
  36. Watterson G.A. (1975): On the number of segregating sites in genetical models without recombination. — Theor. Popul. Biol., Vol. 7, No. 2, pp. 387–407. Zbl0294.92011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.