An alternative extension of the k-means algorithm for clustering categorical data
Ohn San; Van-Nam Huynh; Yoshiteru Nakamori
International Journal of Applied Mathematics and Computer Science (2004)
- Volume: 14, Issue: 2, page 241-247
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Anderberg M.R. (1973): Cluster Analysis for Applications. - New York: Academic Press. Zbl0299.62029
- Ball G.H. and Hall D.J. (1967): A clustering technique for summarizing multivariate data.- Behav. Sci., Vol. 12, No. 2, pp. 153-155.
- Bezdek J.C. (1980): A convergence theorem for the fuzzy ISODATA clustering algorithms.- IEEE Trans. Pattern Anal. Mach. Intell., Vol. 2, No. 1, pp. 1-8. Zbl0441.62055
- Blake C.L. and Merz C.J. (1998): UCI Repository of machine learning databases. - Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html, Irvine, CA: University of California, Department of Information and Computer Science.
- Cox D. (1957): Note on grouping.- J. Amer. Stat. Assoc., Vol. 52, pp. 543-547. Zbl0088.35402
- Fisher D.H. (1987): Knowledge acquisition via incremental conceptual clustering.- Mach. Learn., Vol. 2, No. 2, pp. 139-172.
- Ganti V., Gehrke J. and Ramakrishnan R. (1999): CATUS - Clustering categorical data using summaries. -Proc. Int. Conf. Knowledge Discovery and Data Mining, San Diego, USA, pp. 73-83.
- Gibson D., Kleinberg J. and Raghavan P. (1998) Clustering categorical data: An approach based on dynamic systems. Proc. 24-th Int. Conf. Very LargeDatabases, New York, pp. 311-323.
- Gowda K.C. and Diday E. (1991): Symbolic clustering using a new dissimilarity measure. - Pattern Recogn., Vol. 24, No. 6, pp. 567-578.
- Guha S., Rastogi R. and Shim K. (2000): ROCK: A robust clustering algorithm for categorical attributes. - Inf. Syst., Vol. 25, No. 5, pp. 345-366.
- Han J. and Kamber M. (2001): Data Mining: Concepts and Techniques. - San Francisco: Morgan Kaufmann Publishers.
- Hathaway R.J. and Bezdek J.C. (1986): Local convergence of the c-means algorithms.- Pattern Recogn., Vol. 19, No. 6, pp. 477-480. Zbl0623.62058
- Huang Z. (1997): Clustering large data sets with mixed numeric and categorical values, In: KDD: Techniques and Applications (H. Lu, H. Motoda and H. Luu, Eds.). - Singapore: World Scientific, pp. 21-34.
- Huang Z. (1998): Extensions to the k-means algorithm for clustering large data setswith categorical values. - Data Mining Knowl. Discov., Vol. 2, No. 2, pp. 283-304.
- Huang Z. and Ng M.K. (1999): A fuzzy k-modes algorithm for clustering categorical data.- IEEE Trans. Fuzzy Syst., Vol. 7, No. 4, pp. 446-452.
- Ismail M.A. and Selim S.Z. (1986): Fuzzy c-means: Optimality of solutions and effective termination of the problem.- Pattern Recogn., Vol. 19, No. 6, pp. 481-485. Zbl0623.62059
- Jain A.K. and Dubes R.C. (1988): Algorithms for Clustering Data.- Englewood Cliffs: Prentice Hall. Zbl0665.62061
- Kaufman L. and Rousseeuw P.J. (1990): Finding Groups in Data. - New York: Wiley.
- MacQueen J.B. (1967): Some methods for classification and analysis of multivariate observations. - Proc. 5-th Symp. Mathematical Statistics and Probability, Berkelely, CA, Vol. 1, pp. 281-297. Zbl0214.46201
- Michalski R.S. and Stepp R.E. (1983): Automated construction of classifications: Conceptual clustering versus numerical taxonomy.- IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-5, No. 4, pp. 396-410.
- Ralambondrainy H. (1995): A conceptual version of the k-means algorithm.- Pattern Recogn. Lett., Vol. 15, No. 11, pp. 1147-1157.
- Ruspini E.R. (1969): A new approach to clustering. -Inf. Contr., Vol. 15, No. 1, pp. 22-32. Zbl0192.57101
- Selim S.Z. and Ismail M.A. (1984): k-Means-type algorithms: A generalized convergence theorem and characterization of local optimality. - IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-6, No. 1, pp. 81-87. Zbl0546.62037