Convergence of the Lagrange-Newton method for optimal control problems
International Journal of Applied Mathematics and Computer Science (2004)
- Volume: 14, Issue: 4, page 531-540
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topMalanowski, Kazimierz. "Convergence of the Lagrange-Newton method for optimal control problems." International Journal of Applied Mathematics and Computer Science 14.4 (2004): 531-540. <http://eudml.org/doc/207717>.
@article{Malanowski2004,
abstract = {Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly discussed.},
author = {Malanowski, Kazimierz},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {nonlinear ODEs; Lagrange-Newton method; mixed constraints; optimal control},
language = {eng},
number = {4},
pages = {531-540},
title = {Convergence of the Lagrange-Newton method for optimal control problems},
url = {http://eudml.org/doc/207717},
volume = {14},
year = {2004},
}
TY - JOUR
AU - Malanowski, Kazimierz
TI - Convergence of the Lagrange-Newton method for optimal control problems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2004
VL - 14
IS - 4
SP - 531
EP - 540
AB - Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly discussed.
LA - eng
KW - nonlinear ODEs; Lagrange-Newton method; mixed constraints; optimal control
UR - http://eudml.org/doc/207717
ER -
References
top- Agrachev A.A., Stefani G. and Zezza P.L. (2002): Strong optimality for a bang-bang trajectory. -SIAM J. Contr. Optim., Vol. 41, No. 4, pp. 991-1014. Zbl1020.49021
- Alt W. (1990a): Lagrange-Newton method for infinite-dimensional optimization problems. -Numer. Funct. Anal. Optim., Vol. 11, No. 34, pp. 201-224. Zbl0694.49022
- Alt W. (1990b): Parametric programming with applications to optimal control and sequential quadratic programming. - Bayreuther Math. Schriften, Vol. 34, No. 1, pp. 1-37. Zbl0734.90094
- Alt W. (1990c): Stability of solutions and the Lagrange-Newton method for nonlinear optimization andoptimal control problems. - (Habilitationsschrift), Universitat Bayreuth, Bayreuth.
- Alt W. and Malanowski K. (1993): The Lagrange-Newton method for nonlinear optimal control problems. - Comput. Optim. Appl., Vol. 2, No. 1, pp. 77-100. Zbl0774.49022
- Alt W. and Malanowski K. (1995): The Lagrange-Newton method for state constrained optimal control problems. - Comput. Optim. Appl., Vol. 4, No. 3, pp. 217-239. Zbl0821.49024
- Bonnans J.F. and Shapiro A. (2000): Perturbation Analysis of Optimization Problem. - New York: Springer. Zbl0966.49001
- Bulirsch R. (1971): Die Mehrzielmethode zur numerischen Losung von nichtlinearen Randwert problemen und Aufgaben der optimalen Steuerung. - Report of the Carl-Cranz-Gesellschaft, Oberpfaffenhofen, 1971.
- Dontchev A.L. and Hager W.W. (1998): Lipschitz stability for state constrained nonlinear optimal control. - SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 696-718. Zbl0917.49025
- Felgenhauer U. (2002): On stability of bang-bang type controls. - SIAM J. Contr. Optim., Vol. 41, No. 6, pp. 1843-1867. Zbl1031.49026
- Kim J.-H.R. and Maurer H. (2003): Sensitivity analysis of optimal control problems with bang-bang controls. -Proc. 42nd IEEE Conf. Decision and Control, CDC'2003, Maui, Hawaii, USA, pp. 3281-3286.
- Malanowski K. (1994): Regularity of solutions in stability analysis of optimization and optimal control problems. - Contr. Cybern., Vol. 23, No. 12, pp. 61-86. Zbl0810.49009
- Malanowski K. (1995): Stability and sensitivity of solutions to nonlinear optimal control problems. - Appl. Math. Optim., Vol. 32, No. 2, pp. 111-141. Zbl0842.49020
- Malanowski K. (2001): Stability and sensitivity analysis for optimal control problems with control-state constraints. - Dissertationes Mathematicae, Vol. CCCXCIV, pp. 1-51. Zbl1017.49027
- Malanowski K. and Maurer H. (1996a): Sensitivity analysis for parametric optimal control problems with control-state constraints. - Comput. Optim. Appl., Vol. 5, No. 3, pp. 253-283. Zbl0864.49020
- Malanowski K. and Maurer H. (1996b): Sensitivity analysis for state-constrained optimal control problems. - Discr. Cont. Dynam. Syst., Vol. 4, No. 2, pp. 241-272. Zbl0952.49022
- Malanowski K. and Maurer H. (2001): Sensitivity analysis for optimal control problems subject to higher order state constraints. - Ann. Oper. Res., Vol. 101, No. 2, pp. 43-73. Zbl1005.49021
- Maurer H. and Oberle J. (2002): Second order sufficient conditions for optimal control problems with free final time: the Riccati approach. - SIAM J. Contr. Optim., Vol. 41, No. 2, pp. 380-403. Zbl1012.49018
- Maurer H. and Osmolovskii N. (2004): Second order optimality conditions for bang-bang control problems. - Contr. Cybern., Vol. 32, No. 3. pp. 555-584. Zbl1127.49019
- Maurer H. and Pesch H.J. (1994): Solution differentiability for parametric optimal control problems with control-state constraints. -Contr. Cybern., Vol. 23, No. 1, pp. 201-227. Zbl0809.93024
- Robinson S.M. (1980): Strongly regulargeneralized equations. - Math. Oper. Res., Vol. 5, No. 1, pp. 43-62. Zbl0437.90094
- Stoer J. and Bulirsch R. (1980): Introduction to Numerical Analysis. - New York: Springer. Zbl0423.65002
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.