Convergence of the Lagrange-Newton method for optimal control problems

Kazimierz Malanowski

International Journal of Applied Mathematics and Computer Science (2004)

  • Volume: 14, Issue: 4, page 531-540
  • ISSN: 1641-876X

Abstract

top
Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly discussed.

How to cite

top

Malanowski, Kazimierz. "Convergence of the Lagrange-Newton method for optimal control problems." International Journal of Applied Mathematics and Computer Science 14.4 (2004): 531-540. <http://eudml.org/doc/207717>.

@article{Malanowski2004,
abstract = {Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly discussed.},
author = {Malanowski, Kazimierz},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {nonlinear ODEs; Lagrange-Newton method; mixed constraints; optimal control},
language = {eng},
number = {4},
pages = {531-540},
title = {Convergence of the Lagrange-Newton method for optimal control problems},
url = {http://eudml.org/doc/207717},
volume = {14},
year = {2004},
}

TY - JOUR
AU - Malanowski, Kazimierz
TI - Convergence of the Lagrange-Newton method for optimal control problems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2004
VL - 14
IS - 4
SP - 531
EP - 540
AB - Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly discussed.
LA - eng
KW - nonlinear ODEs; Lagrange-Newton method; mixed constraints; optimal control
UR - http://eudml.org/doc/207717
ER -

References

top
  1. Agrachev A.A., Stefani G. and Zezza P.L. (2002): Strong optimality for a bang-bang trajectory. -SIAM J. Contr. Optim., Vol. 41, No. 4, pp. 991-1014. Zbl1020.49021
  2. Alt W. (1990a): Lagrange-Newton method for infinite-dimensional optimization problems. -Numer. Funct. Anal. Optim., Vol. 11, No. 34, pp. 201-224. Zbl0694.49022
  3. Alt W. (1990b): Parametric programming with applications to optimal control and sequential quadratic programming. - Bayreuther Math. Schriften, Vol. 34, No. 1, pp. 1-37. Zbl0734.90094
  4. Alt W. (1990c): Stability of solutions and the Lagrange-Newton method for nonlinear optimization andoptimal control problems. - (Habilitationsschrift), Universitat Bayreuth, Bayreuth. 
  5. Alt W. and Malanowski K. (1993): The Lagrange-Newton method for nonlinear optimal control problems. - Comput. Optim. Appl., Vol. 2, No. 1, pp. 77-100. Zbl0774.49022
  6. Alt W. and Malanowski K. (1995): The Lagrange-Newton method for state constrained optimal control problems. - Comput. Optim. Appl., Vol. 4, No. 3, pp. 217-239. Zbl0821.49024
  7. Bonnans J.F. and Shapiro A. (2000): Perturbation Analysis of Optimization Problem. - New York: Springer. Zbl0966.49001
  8. Bulirsch R. (1971): Die Mehrzielmethode zur numerischen Losung von nichtlinearen Randwert problemen und Aufgaben der optimalen Steuerung. - Report of the Carl-Cranz-Gesellschaft, Oberpfaffenhofen, 1971. 
  9. Dontchev A.L. and Hager W.W. (1998): Lipschitz stability for state constrained nonlinear optimal control. - SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 696-718. Zbl0917.49025
  10. Felgenhauer U. (2002): On stability of bang-bang type controls. - SIAM J. Contr. Optim., Vol. 41, No. 6, pp. 1843-1867. Zbl1031.49026
  11. Kim J.-H.R. and Maurer H. (2003): Sensitivity analysis of optimal control problems with bang-bang controls. -Proc. 42nd IEEE Conf. Decision and Control, CDC'2003, Maui, Hawaii, USA, pp. 3281-3286. 
  12. Malanowski K. (1994): Regularity of solutions in stability analysis of optimization and optimal control problems. - Contr. Cybern., Vol. 23, No. 12, pp. 61-86. Zbl0810.49009
  13. Malanowski K. (1995): Stability and sensitivity of solutions to nonlinear optimal control problems. - Appl. Math. Optim., Vol. 32, No. 2, pp. 111-141. Zbl0842.49020
  14. Malanowski K. (2001): Stability and sensitivity analysis for optimal control problems with control-state constraints. - Dissertationes Mathematicae, Vol. CCCXCIV, pp. 1-51. Zbl1017.49027
  15. Malanowski K. and Maurer H. (1996a): Sensitivity analysis for parametric optimal control problems with control-state constraints. - Comput. Optim. Appl., Vol. 5, No. 3, pp. 253-283. Zbl0864.49020
  16. Malanowski K. and Maurer H. (1996b): Sensitivity analysis for state-constrained optimal control problems. - Discr. Cont. Dynam. Syst., Vol. 4, No. 2, pp. 241-272. Zbl0952.49022
  17. Malanowski K. and Maurer H. (2001): Sensitivity analysis for optimal control problems subject to higher order state constraints. - Ann. Oper. Res., Vol. 101, No. 2, pp. 43-73. Zbl1005.49021
  18. Maurer H. and Oberle J. (2002): Second order sufficient conditions for optimal control problems with free final time: the Riccati approach. - SIAM J. Contr. Optim., Vol. 41, No. 2, pp. 380-403. Zbl1012.49018
  19. Maurer H. and Osmolovskii N. (2004): Second order optimality conditions for bang-bang control problems. - Contr. Cybern., Vol. 32, No. 3. pp. 555-584. Zbl1127.49019
  20. Maurer H. and Pesch H.J. (1994): Solution differentiability for parametric optimal control problems with control-state constraints. -Contr. Cybern., Vol. 23, No. 1, pp. 201-227. Zbl0809.93024
  21. Robinson S.M. (1980): Strongly regulargeneralized equations. - Math. Oper. Res., Vol. 5, No. 1, pp. 43-62. Zbl0437.90094
  22. Stoer J. and Bulirsch R. (1980): Introduction to Numerical Analysis. - New York: Springer. Zbl0423.65002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.