Convergence of the Lagrange-Newton method for optimal control problems
International Journal of Applied Mathematics and Computer Science (2004)
- Volume: 14, Issue: 4, page 531-540
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Agrachev A.A., Stefani G. and Zezza P.L. (2002): Strong optimality for a bang-bang trajectory. -SIAM J. Contr. Optim., Vol. 41, No. 4, pp. 991-1014. Zbl1020.49021
- Alt W. (1990a): Lagrange-Newton method for infinite-dimensional optimization problems. -Numer. Funct. Anal. Optim., Vol. 11, No. 34, pp. 201-224. Zbl0694.49022
- Alt W. (1990b): Parametric programming with applications to optimal control and sequential quadratic programming. - Bayreuther Math. Schriften, Vol. 34, No. 1, pp. 1-37. Zbl0734.90094
- Alt W. (1990c): Stability of solutions and the Lagrange-Newton method for nonlinear optimization andoptimal control problems. - (Habilitationsschrift), Universitat Bayreuth, Bayreuth.
- Alt W. and Malanowski K. (1993): The Lagrange-Newton method for nonlinear optimal control problems. - Comput. Optim. Appl., Vol. 2, No. 1, pp. 77-100. Zbl0774.49022
- Alt W. and Malanowski K. (1995): The Lagrange-Newton method for state constrained optimal control problems. - Comput. Optim. Appl., Vol. 4, No. 3, pp. 217-239. Zbl0821.49024
- Bonnans J.F. and Shapiro A. (2000): Perturbation Analysis of Optimization Problem. - New York: Springer. Zbl0966.49001
- Bulirsch R. (1971): Die Mehrzielmethode zur numerischen Losung von nichtlinearen Randwert problemen und Aufgaben der optimalen Steuerung. - Report of the Carl-Cranz-Gesellschaft, Oberpfaffenhofen, 1971.
- Dontchev A.L. and Hager W.W. (1998): Lipschitz stability for state constrained nonlinear optimal control. - SIAM J. Contr. Optim., Vol. 35, No. 2, pp. 696-718. Zbl0917.49025
- Felgenhauer U. (2002): On stability of bang-bang type controls. - SIAM J. Contr. Optim., Vol. 41, No. 6, pp. 1843-1867. Zbl1031.49026
- Kim J.-H.R. and Maurer H. (2003): Sensitivity analysis of optimal control problems with bang-bang controls. -Proc. 42nd IEEE Conf. Decision and Control, CDC'2003, Maui, Hawaii, USA, pp. 3281-3286.
- Malanowski K. (1994): Regularity of solutions in stability analysis of optimization and optimal control problems. - Contr. Cybern., Vol. 23, No. 12, pp. 61-86. Zbl0810.49009
- Malanowski K. (1995): Stability and sensitivity of solutions to nonlinear optimal control problems. - Appl. Math. Optim., Vol. 32, No. 2, pp. 111-141. Zbl0842.49020
- Malanowski K. (2001): Stability and sensitivity analysis for optimal control problems with control-state constraints. - Dissertationes Mathematicae, Vol. CCCXCIV, pp. 1-51. Zbl1017.49027
- Malanowski K. and Maurer H. (1996a): Sensitivity analysis for parametric optimal control problems with control-state constraints. - Comput. Optim. Appl., Vol. 5, No. 3, pp. 253-283. Zbl0864.49020
- Malanowski K. and Maurer H. (1996b): Sensitivity analysis for state-constrained optimal control problems. - Discr. Cont. Dynam. Syst., Vol. 4, No. 2, pp. 241-272. Zbl0952.49022
- Malanowski K. and Maurer H. (2001): Sensitivity analysis for optimal control problems subject to higher order state constraints. - Ann. Oper. Res., Vol. 101, No. 2, pp. 43-73. Zbl1005.49021
- Maurer H. and Oberle J. (2002): Second order sufficient conditions for optimal control problems with free final time: the Riccati approach. - SIAM J. Contr. Optim., Vol. 41, No. 2, pp. 380-403. Zbl1012.49018
- Maurer H. and Osmolovskii N. (2004): Second order optimality conditions for bang-bang control problems. - Contr. Cybern., Vol. 32, No. 3. pp. 555-584. Zbl1127.49019
- Maurer H. and Pesch H.J. (1994): Solution differentiability for parametric optimal control problems with control-state constraints. -Contr. Cybern., Vol. 23, No. 1, pp. 201-227. Zbl0809.93024
- Robinson S.M. (1980): Strongly regulargeneralized equations. - Math. Oper. Res., Vol. 5, No. 1, pp. 43-62. Zbl0437.90094
- Stoer J. and Bulirsch R. (1980): Introduction to Numerical Analysis. - New York: Springer. Zbl0423.65002