Observer design for systems with unknown inputs

Stefen Hui; Stanisław Żak

International Journal of Applied Mathematics and Computer Science (2005)

  • Volume: 15, Issue: 4, page 431-446
  • ISSN: 1641-876X

Abstract

top
Design procedures are proposed for two different classes of observers for systems with unknown inputs. In the first approach, the state of the observed system is decomposed into known and unknown components. The unknown component is a projection, not necessarily orthogonal, of the whole state along the subspace in which the available state component resides. Then, a dynamical system to estimate the unknown component is constructed. Combining the output of the dynamical system, which estimates the unknown state component, with the available state information results in an observer that estimates the whole state. It is shown that some previously proposed observer architectures can be obtained using the projection operator approach presented in this paper. The second approach combines sliding modes and the second method of Lyapunov resulting in a nonlinear observer. The nonlinear component of the sliding mode observer forces the observation error into the sliding mode along a manifold in the observation error space. Design algorithms are given for both types of observers.

How to cite

top

Hui, Stefen, and Żak, Stanisław. "Observer design for systems with unknown inputs." International Journal of Applied Mathematics and Computer Science 15.4 (2005): 431-446. <http://eudml.org/doc/207755>.

@article{Hui2005,
abstract = {Design procedures are proposed for two different classes of observers for systems with unknown inputs. In the first approach, the state of the observed system is decomposed into known and unknown components. The unknown component is a projection, not necessarily orthogonal, of the whole state along the subspace in which the available state component resides. Then, a dynamical system to estimate the unknown component is constructed. Combining the output of the dynamical system, which estimates the unknown state component, with the available state information results in an observer that estimates the whole state. It is shown that some previously proposed observer architectures can be obtained using the projection operator approach presented in this paper. The second approach combines sliding modes and the second method of Lyapunov resulting in a nonlinear observer. The nonlinear component of the sliding mode observer forces the observation error into the sliding mode along a manifold in the observation error space. Design algorithms are given for both types of observers.},
author = {Hui, Stefen, Żak, Stanisław},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {uncertain systems; unknown input observer (UIO); state observation; second method of Lyapunov; projection operators},
language = {eng},
number = {4},
pages = {431-446},
title = {Observer design for systems with unknown inputs},
url = {http://eudml.org/doc/207755},
volume = {15},
year = {2005},
}

TY - JOUR
AU - Hui, Stefen
AU - Żak, Stanisław
TI - Observer design for systems with unknown inputs
JO - International Journal of Applied Mathematics and Computer Science
PY - 2005
VL - 15
IS - 4
SP - 431
EP - 446
AB - Design procedures are proposed for two different classes of observers for systems with unknown inputs. In the first approach, the state of the observed system is decomposed into known and unknown components. The unknown component is a projection, not necessarily orthogonal, of the whole state along the subspace in which the available state component resides. Then, a dynamical system to estimate the unknown component is constructed. Combining the output of the dynamical system, which estimates the unknown state component, with the available state information results in an observer that estimates the whole state. It is shown that some previously proposed observer architectures can be obtained using the projection operator approach presented in this paper. The second approach combines sliding modes and the second method of Lyapunov resulting in a nonlinear observer. The nonlinear component of the sliding mode observer forces the observation error into the sliding mode along a manifold in the observation error space. Design algorithms are given for both types of observers.
LA - eng
KW - uncertain systems; unknown input observer (UIO); state observation; second method of Lyapunov; projection operators
UR - http://eudml.org/doc/207755
ER -

References

top
  1. Bhattacharyya S. P. (1978): Observer design for linear systems with unknown inputs. - IEEE Trans. Automat. Contr., Vol. AC-23, No. 3, pp. 483-484. Zbl0377.93025
  2. Chang S.-K., You W.-T., and Hsu P.-L. (1997): Design of general structured observers for linear systems with unknown inputs. - J. Franklin Instit., Vol. 334B, No. 2, pp. 213-232. Zbl0870.93019
  3. Chen J., Patton R. J., and Zhang H.-Y. (1996): Design of unknown input observers and robust fault detection filters. - Int. J. Contr., Vol. 63, No. 1, pp. 85-105. Zbl0844.93020
  4. Chen J. and Patton R. J. (1999): Robust Model-Based Fault Diagnosis for Dynamic Systems. - Boston: Kluwer. Zbl0920.93001
  5. Choi H. H. and Ro K.-S. (2005): LMI-based sliding-mode observer design method.- IEE Proc. Contr. Theory Appl., Vol. 152, No. 1, pp. 113-115. 
  6. Corless M. and Tu J. (1998): State and input estimation for a class of uncertain systems. - Automatica, Vol. 34, No. 6, pp. 757-764. Zbl0932.93008
  7. Darouach M., Zasadzinski M., and Xu S. J. (1994): Full-order observers for linear systems with unknown inputs. - IEEE Trans. Automat. Contr., Vol. 39, No. 3, pp. 606-609. Zbl0813.93015
  8. Dawson D. M., Hu J., and Burg T. C. (1998): Nonlinear Control of Electric Machinery.- New York: Marcel Dekker. 
  9. Edwards C. and Spurgeon S. K. (1998): Sliding Mode Control: Theory and Applications. - London: Taylor and Francis. Zbl0964.93019
  10. Edwards C., Spurgeon S. K., and Patton R. J. (2000): Sliding mode observers for fault detection and isolation. - Automatica, Vol. 36, No. 4, pp. 541-553. Zbl0968.93502
  11. Ellis G. (2002): Observers in Control Systems; A Practical Guide. - San Diego: Academic Press. 
  12. Gantmacher F. R. (1990): The Theory of Matrices, Vol. 1, 2nd Ed.. - New York: Chelsea Publishing Company. Zbl0085.01001
  13. Ha Q. P., Trinh H., Nguyen H. T., and Tuan H. D. (2003): Dynamic output feedback sliding-mode control using pole placement and linear functional observers. - IEEE Trans. Industr. Electron., Vol. 50, No. 5, pp. 1030-1037. 
  14. Hou M. and Muller P. C. (1992): Design of observers for linear systems with unknown inputs. - IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 871-875. Zbl0775.93021
  15. Hou M., Pugh A. C. and Muller P. C. (1999): Disturbance decoupled functional observers. - IEEE Trans. Automat. Contr., Vol. 44, No. 2, pp. 382-386. Zbl0958.93017
  16. Hostetter G. and Meditch J. S. (1973): Observing systems with unmeasurable inputs.- IEEE Trans. Automat. Contr., Vol. AC-18, No. 3, pp. 307-308. Zbl0269.93008
  17. Hui S. and Żak S. H. (1990): Control and observation of uncertain systems: A variable structure systems approach, In: Control and Dynamic Systems; Advances in Theory and Applications, Vol. 34: Advances in Control Mechanics, Part 1 of 2 (C. T. Leondes, Ed.). - San Diego: Academic Press, pp. 175-204. 
  18. Hui S. and Żak S. H. (1993): Low-order state estimators and compensators for dynamical systems with unknown inputs. - Syst. Contr. Lett., Vol. 21, No. 6, pp. 493-502. Zbl0794.93050
  19. Hui S. and Żak S. H. (2005): Low-order unknown input observers. -Proc. Amer. Contr. Conf., Portland, OR, pp. 4192-4197. 
  20. Jiang B., Staroswiecki M., and Cocquempot V. (2004): Fault estimation in nonlinear uncertain systems using robust sliding-mode observers. - IEE Proc. Contr. Theory Appl., Vol. 151, No. 1, pp. 29-37. 
  21. Kaczorek T. (1998): Vectors and Matrices in Control and Electrical Engineering, 2nd Ed.. - Warsaw: WNT, (in Polish). 
  22. Koshkouei A. J. and Zinober A. S. I. (2004); Sliding mode state observation for non-linear systems. - Int. J. Contr., Vol. 77, No. 2, pp. 118-127. Zbl1049.93013
  23. Kudva P., Viswanadham N., and Ramakrishna A. (1980): Observers for linear systems with unknown inputs. - IEEE Trans. Automat. Contr., Vol. AC-25, No. 1, pp. 113-115. Zbl0443.93012
  24. Kurek J. E. (1983): The state vector reconstruction for linear systems with unknown inputs. - IEEE Trans. Automat. Contr., Vol. AC-28,No. 12, pp. 1120-1122. Zbl0538.93005
  25. Krzemiński S. and Kaczorek T. (2004): Perfect reduced-order unknown-input observer for standard systems. - Bull. Polish Acad. Sci., Techn. Sci., Vol. 52, No. 2, pp. 103-107. Zbl1140.93326
  26. Luenberger D. G. (1966): Observers for multivariable systems. - IEEE Trans. Automat. Contr., Vol. AC-11, No. 2, pp. 190-197. 
  27. Luenberger D. G. (1971): An introduction to observers. - IEEE Trans. Automat. Contr., Vol. AC-16, No. 6, pp. 596-602. 
  28. Luenberger D. G. (1979): Introduction to Dynamic Systems: Theory, Models, and Applications. - New York: Wiley. Zbl0458.93001
  29. Millerioux G. and Daafouz J. (2004): Unknown input observers for switched linear discrete time systems. - Proc. Amer. Contr. Conf., Boston, MA, pp. 5802-5805. Zbl1099.93520
  30. O'Reilly J. (1983): Observers for Linear Systems. - London: Academic Press. 
  31. Robenack K. R and Lynch A. F. (2004): An efficient method for observer designwith approximately linear error dynamics. - Int. J. Contr., Vol. 77, No. 7, pp. 607-612. Zbl1062.93008
  32. Saif M. and Xiong Y. (2003): Sliding mode observers and their application in fault diagnosis, In: Fault Diagnosis and Fault Tolerance for Mechatronic Systems (F. Caccavale and L. Villani, Eds.). - Berlin: Springer, pp. 1-57. Zbl1043.93012
  33. Solsona J. A. and Valla M. I. (2003): Disturbance and nonlinear Luenberger observers for estimating mechanical variables in permanent magnet synchronous motors under mechanical parameters uncertainties. - IEEE Trans. Industr. Electron., Vol. 50, No. 4, pp. 717-725. 
  34. Smith L. (1984): Linear Algebra, 2nd Ed.. - New York: Springer. 
  35. Sundareswaran K. K., McLane P. J. and Bayoumi M. M. (1977): Observers for linear systems with arbitrary plant disturbances. - IEEE Trans. Automat. Contr., Vol. AC-22, No. 5, pp. 870-871. Zbl0361.93035
  36. Utkin V., Guldner J., and Shi J. (1999): Sliding Mode Control in Electromechanical Systems. - London: Taylor and Francis. 
  37. Walcott B. L. and Żak S. H. (1987): State observation of nonlinear uncertain dynamical systems. - IEEE Trans. Automat. Contr., Vol. AC-32, No. 2, pp. 166-170. Zbl0618.93019
  38. Walcott B. L., Corless M. J., and Żak S. H. (1987): Comparative study of non-linear state-observation techniques. - Int. J. Contr., Vol. 45, No. 6, pp. 2109-2132. Zbl0627.93012
  39. Walcott B. L. and Żak S. H. (1988): Combined observer-controller synthesis for uncertain dynamical systems with applications. - IEEE Trans. Sys., Man Cybern., Vol. 18, No. 1, pp. 88-104. Zbl0652.93019
  40. Wang S.-H., Davison E. J. and Dorato P. (1975): Observing the states of systems with unmeasurable disturbances. - IEEE Trans. Automat. Contr., Vol. AC-20,No. 5, pp. 716-717. Zbl0318.93048
  41. Xiang J., Su H., and Chu J. (2005): On the design of Walcott-Zak sliding mode observer. - Proc. Amer. Contr. Conf. Portland, OR, pp. 2451-2456. 
  42. Yang F. and Wilde R. W. (1988): Observers for linear systems with unknown inputs. - IEEE Trans. Automat. Contr., Vol. 33, No. 7, pp. 677-681. Zbl0646.93013
  43. Żak S. H. and Walcott B. L. (1990): State observation of nonlinear control systems via the method of Lyapunov, In: Deterministic Control of Uncertain Systems (A. S. I. Zinober, Ed.). - London: Peter Peregrinus Ltd,Ch. 16, pp. 333-350. 
  44. Żak S. H. and Hui S. (1993): Output feedback variable structure controllers and state estimators for uncertain nonlinear dynamic systems. - IEE Proc. Contr. Theory Appl., Vol. 140, No. 1, pp. 41-50. Zbl0772.93016
  45. Żak S. H., Walcott B. L., and Hui S. (1993): Variable structure control and observation of nonlinear uncertain systems, In: Variable Structure Control for Robotics and Aerospace Applications (K.-K. D. Young, Ed.). - Amsterdam: Elsevier, Ch. 4, pp. 59-88. 
  46. Żak S. H. (2003): Systems and Control. - New York: Oxford University Press. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.