Some properties of the spectral radius of a set of matrices
International Journal of Applied Mathematics and Computer Science (2006)
- Volume: 16, Issue: 2, page 183-188
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topCzornik, Adam, and Jurgas, Piotr. "Some properties of the spectral radius of a set of matrices." International Journal of Applied Mathematics and Computer Science 16.2 (2006): 183-188. <http://eudml.org/doc/207783>.
@article{Czornik2006,
abstract = {In this paper we show new formulas for the spectral radius and the spectral subradius of a set of matrices. The advantage of our results is that we express the spectral radius of any set of matrices by the spectral radius of a set of symmetric positive definite matrices. In particular, in one of our formulas the spectral radius is expressed by singular eigenvalues of matrices, whereas in the existing results it is expressed by eigenvalues.},
author = {Czornik, Adam, Jurgas, Piotr},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {symmetric matrices; spectral subradius; spectral radius; singular eigenvalues},
language = {eng},
number = {2},
pages = {183-188},
title = {Some properties of the spectral radius of a set of matrices},
url = {http://eudml.org/doc/207783},
volume = {16},
year = {2006},
}
TY - JOUR
AU - Czornik, Adam
AU - Jurgas, Piotr
TI - Some properties of the spectral radius of a set of matrices
JO - International Journal of Applied Mathematics and Computer Science
PY - 2006
VL - 16
IS - 2
SP - 183
EP - 188
AB - In this paper we show new formulas for the spectral radius and the spectral subradius of a set of matrices. The advantage of our results is that we express the spectral radius of any set of matrices by the spectral radius of a set of symmetric positive definite matrices. In particular, in one of our formulas the spectral radius is expressed by singular eigenvalues of matrices, whereas in the existing results it is expressed by eigenvalues.
LA - eng
KW - symmetric matrices; spectral subradius; spectral radius; singular eigenvalues
UR - http://eudml.org/doc/207783
ER -
References
top- Berger M.A. and Yang Wang (1992): Bounded semigroups ofmatrices. - Lin. Alg. Appl., Vol. 166, No. 1, pp. 21-27. Zbl0818.15006
- Czornik A. (2005): On the generalized spectral subradius. - Lin. Alg. Appl., Vol. 407, No. 1, pp. 242-248. Zbl1080.15008
- Daubechies I. and Lagarias J.C. (1992a): Two-scale difference equation II. Infinite matrix products, local regularity bounds and fractals. - SIAM J. Math. Anal., Vol. 23, No. 4, pp. 1031-1079. Zbl0788.42013
- Daubechies I. and Lagarias J.C (1992b): Sets of matrices all infinite products of which converge. - Linear Alg. Appl., No. 161,pp. 227-263. Zbl0746.15015
- Elsner L. (1995): The generalized spectral radius theorem: Ananalytic-geometric proof. - Lin. Alg. Appl., Vol. 220, No. 1, pp. 151-159. Zbl0828.15006
- Gol'dsheid I.Ya. and Margulis G.A. (1989): Lyapunov indices of aproduct of random matrices. - Russian Math. Surveys, Vol. 44,No. 1, pp. 11-71.
- Golub G.H. and Loan C.F.V. (1996): Matrix Computations. - 3rd Ed. Baltimore, Johns Hopkins University Press. Zbl0865.65009
- Gripenberg G. (1996): Computing the joint spectral radius. - Lin. Alg. Appl., Vol. 234, No. 1, pp. 43-60. Zbl0863.65017
- Guglielmi N. and Zennaro M. (2001): On the asymptotic properties of a family of matrices. - Lin. Alg. Appl., Vol. 322,No. 1-3, pp. 169-192. Zbl0971.15016
- Gurvits L. (1995): Stability of discrete linear inclusion. - Lin. Alg. Appl., Vol. 231, No. 1, pp. 47-85. Zbl0845.68067
- Horn R.A. and Johnson C.R. (1985): Matrix Analysis. - Cambridge, MA: Cambridge Univ. Press. Zbl0576.15001
- Jia R.Q. (1995): Subdivision schemes in L_p spaces. - Adv. Comput. Math., Vol. 3, No. 1, pp.309-341. Zbl0833.65148
- Michelli C.A. and Prautzsch H. (1989): Uniform refinement of curves. - Lin. Alg. Appl., Vol. 114 and 115, No. 1, pp. 841-870. Zbl0668.65011
- Rota G.C. and Strang G. (1960): A note on the joint spectral radius. - Inag. Math. Vol. 22,No. 1, pp. 379-381. Zbl0095.09701
- Shih M.H. (1999): Simultaneous Schur stability. - Lin. Alg. Appl., Vol. 287, No. 1-3, pp. 323-336. Zbl0948.15016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.