Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation
Nicolas Crouseilles; Guillaume Latu; Eric Sonnendrücker
International Journal of Applied Mathematics and Computer Science (2007)
- Volume: 17, Issue: 3, page 335-349
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topCrouseilles, Nicolas, Latu, Guillaume, and Sonnendrücker, Eric. "Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation." International Journal of Applied Mathematics and Computer Science 17.3 (2007): 335-349. <http://eudml.org/doc/207841>.
@article{Crouseilles2007,
abstract = {This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the method with up to 64 processors. This work is a part of the CALVI project.},
author = {Crouseilles, Nicolas, Latu, Guillaume, Sonnendrücker, Eric},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {parallelism; semi-Lagrangian method; Vlasov-Poisson equation; Vlasov equation},
language = {eng},
number = {3},
pages = {335-349},
title = {Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation},
url = {http://eudml.org/doc/207841},
volume = {17},
year = {2007},
}
TY - JOUR
AU - Crouseilles, Nicolas
AU - Latu, Guillaume
AU - Sonnendrücker, Eric
TI - Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation
JO - International Journal of Applied Mathematics and Computer Science
PY - 2007
VL - 17
IS - 3
SP - 335
EP - 349
AB - This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the method with up to 64 processors. This work is a part of the CALVI project.
LA - eng
KW - parallelism; semi-Lagrangian method; Vlasov-Poisson equation; Vlasov equation
UR - http://eudml.org/doc/207841
ER -
References
top- Bermejo R. (1991): Analysis of an algorithm for the Galerkin-characteristic method. Numerische Mathematik, Vol. 60, pp. 163-194. Zbl0723.65073
- Besse N. and Sonnendrucker E. (2003): Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of Computational Physics, Vol. 191, pp. 341-376. Zbl1030.82011
- Birdsall C. K. and Langdon A. B.: Plasma Physics via Computer Simulation. Bristol: Institute of Physics Publishing.
- Bouchut F., Golse F. and Pulvirenti M. (2000): Kinetic Equations and Asymptotic Theory. Paris: Gauthier-Villars. Zbl0979.82048
- DeBoor C. (1978): A Practical Guide to Splines. New-York: Springer.
- Campos-Pinto M. and Merhenberger M. (2004): Adaptive Numerical Resolution of the Vlasov Equation.
- Cheng C. Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, p. 330.
- Coulaud O., Sonnendrucker E., Dillon E., Bertrand P. and Ghizzo A. (1999): Parallelization of semi-Lagrangian Vlasov codes. Journal of Plasma Physics, Vol. 61, pp. 435-448.
- Feix M. R., Bertrand P. and Ghizzo A. (1994): Title? In: Kinetic Theory and Computing, (B. Perthame, Ed.).
- Filbet F., Sonnendrucker E. and Bertrand P. (2001): Conservative numerical schemes for the Vlasov equation. Journal of Computational Physics, Vol. 172, pp. 166-187. Zbl0998.65138
- Filbet F. and Sonnendrucker E. (2003): Comparison of Eulerian Vlasov solvers. Computer Physics Communications, Vol. 151, pp. 247-266. Zbl1196.82108
- Filbet F. and Violard E. (2002): Parallelization of a Vlasov Solver by Communication Overlapping. Proceedings PDPTA.
- Glassey R. T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM. Zbl0858.76001
- Ghizzo A., Bertrand P., Begue M. L., Johnston T. W. and Shoucri M. (1996): A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator. IEEE Transactions on Plasma Science, Vol. 24.
- Ghizzo A., Bertrand P., Shoucri M., Johnston T. W., Filjakow E. and Feix M. R. (1990): A Vlasov code for the numerical simulation of stimulated Raman scattering. Journal of Computational Physis, Vol. 90, pp. 431-457. Zbl0702.76080
- Grandgirard V., Brunetti M., Bertrand P., Besse N., Garbet N., Ghendrih P., Manfredi G., Sarrazin Y., Sauter O., Sonnendrucker E., Vaclavik J. and Villard L. (2006): A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. Journal of Computational Physics, Vol. 217, pp. 395-423. Zbl1160.76385
- Gutnic M., Haefele M., Paun I. and Sonnendrucker E. (2004): Vlasov simulation on an adaptive phase space grid. Computer Physical Communications, Vol. 164, pp. 214-219. Zbl1196.76098
- Hammerlin G. and Hoffmann K. H. (1991): Numerical Mathematics, New-York: Springer. Zbl0713.65001
- Kim C. C. and Parker S. E. (2000): Massively parallel three-dimensional toroidal gyrokinetic flux-tube turbulence simulation. Journal of Computational Physics, Vol. 161, pp. 589-604. Zbl0980.76058
- McKinstrie C. J., Giacone R. E. and Startsev E. A. (1999): Accurate formulas for the Landau damping rates of electrostatic waves. Physics of Plasmas, Vol. 6, pp. 463-466.
- Manfredi G. (1997): Long time behaviour of strong linear Landau damping. Physical Review Letters, Vol. 79.
- Shoucri M. and Knorr G. (1974): Numerical integration of the Vlasov equation. Journal of Computational Physics, Vol. 14, pp. 84-92. Zbl0275.65029
- Sonnendrucker E., Filbet F., Friedman A., Oudet E. and Vay J. L. (2004): Vlasov simulation of beams on a moving phase space grid. Computer Physics Communications, Vol. 164, pp. 390-395.
- Sonnendrucker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equations. Journal of Computational Physics, Vol. 149, pp. 201-220. Zbl0934.76073
- Staniforth A. and Cote J. (1991): Semi-Lagrangian integration schemes for atmospheric models - A review. Monthly Weather Review, Vol. 119, pp. 2206-2223
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.