A direct and accurate adaptive semi-Lagrangian scheme for the Vlasov-Poisson equation
International Journal of Applied Mathematics and Computer Science (2007)
- Volume: 17, Issue: 3, page 351-359
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Besse N. (2004): Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM Journal on Numerical Analysis, Vol. 42, No. 1, pp. 350-382. Zbl1071.82037
- Besse N., Filbet F., Gutnic M., Paun I. and Sonnendrucker E. (2001): An adaptive numerical method for the Vlasov equation based on a multiresolution analysis, In: Numerical Mathematics and Advanced Applications ENUMATH 2001(F. Brezzi, A. Buffa, S. Escorsaro and A. Murli, Eds.). Ischia: Springer, pp. 437-446. Zbl1254.82035
- Campos Pinto M. (2005): Developpement et analyse de schemas adaptatifs pour les equations de transport. Ph. D. thesis (in French), Universite Pierre et Marie Curie, Paris.
- Campos Pinto M. (2007): P_1 interpolation in the plane and functions of bounded total curvature. (in preparation).
- Campos Pinto M. and Mehrenberger M. (2005): Adaptive numerical resolution of the Vlasov equation, In: Numerical Methods for Hyperbolic and Kinetic Problems (S. Cordier, T. Goudon, M. Gutnic, E. Sonnendrucker, Eds.). Zurich: European Mathematical Society, Vol. 7, pp. 43-58. Zbl1210.65169
- Campos Pinto M. and Mehrenberger M. (2007): Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system. (submitted) Zbl1187.65108
- Cheng C. Z. and Knorr G. (1976): The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, pp. 330-351.
- Cohen A., Kaber S. M., Muller S. and Postel M. (2003): Fully adaptive multiresolution finite volume schemes for conservation laws. Mathematics of Computation, Vol. 72, No. 241, pp. 183-225. Zbl1010.65035
- Cooper J. and Klimas A. (1980): Boundary value problems for the Vlasov-Maxwell equation in one dimension. Journal of Mathematical Analysis and Applications, Vol. 75, No. 2, pp. 306-329. Zbl0454.35075
- Dahmen, W. (1982): Adaptive approximation by multivariate smooth splines. Journal of Approximation Theory, Vol. 36, No. 2, pp. 119-140. Zbl0493.41009
- Dahmen W., Gottschlich-Muller B. and Muller S. (2001): Multiresolution schemes for conservation laws. Numerische Mathematik, Vol. 88, No. 3, pp. 399-443. Zbl1001.65104
- DeVore, R. (1998): Nonlinear approximation. Acta Numerica, Vol. 7, pp. 51-150 Zbl0931.65007
- Glassey R. T. (1996): The Cauchy Problem in Kinetic Theory. Philadelphia, PA: SIAM Zbl0858.76001
- Gutnic M., Haefele M., Paun I. and Sonnendrucker E. (2004): Vlasov simulations on an adaptive phase-space grid. Computer Physics Communications, Vol. 164, No. 1-3, pp. 214-219. Zbl1196.76098
- Iordanskii S. V. (1964): The Cauchy problem for the kinetic equation of plasma. American Mathematical Society Tranations, Series2, Vol. 35, pp. 351-363.
- Raviart P. -A. (1985): An analysis of particle methods. Lecture Notes in Mathematics, Vol. 1127, Springer, Berlin, pp. 243-324.
- Roussel O., Schneider K., Tsigulin, A. and Bockhorn H. (2003): A conservative fully adaptive multiresolution algorithm for parabolic PDEs. Journal of Computational Physics, Vol. 188, No. 2, pp. 493-523. Zbl1022.65093
- Sonnendrucker E., Filbet F., Friedman A., Oudet E. and Vay J. L. (2004): Vlasov simulation of beams with a moving grid. Computer Physics Communications, Vol. 164, pp. 390-395.
- Sonnendrucker E., Roche J., Bertrand P. and Ghizzo A. (1999): The semi-Lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computational Physics, Vol. 149, No. 2, pp. 201-220. Zbl0934.76073
- Yserentant H. (1992): Hierarchical bases, In: ICIAM 91: Proceedings of the 2nd International Conference on Industrial and Applied Mathematics (R. E. O'Malley, Ed.). Philadelphia, PA: SIAM, pp. 256-276