An output controllability problem for semilinear distributed hyperbolic systems

E. Zerrik; R. Larhrissi; H. Bourray

International Journal of Applied Mathematics and Computer Science (2007)

  • Volume: 17, Issue: 4, page 437-448
  • ISSN: 1641-876X

Abstract

top
The paper aims at extending the notion of regional controllability developed for linear systems cite to the semilinear hyperbolic case. We begin with an asymptotically linear system and the approach is based on an extension of the Hilbert uniqueness method and Schauder's fixed point theorem. The analytical case is then tackled using generalized inverse techniques and converted to a fixed point problem leading to an algorithm which is successfully implemented numerically and illustrated with examples.

How to cite

top

Zerrik, E., Larhrissi, R., and Bourray, H.. "An output controllability problem for semilinear distributed hyperbolic systems." International Journal of Applied Mathematics and Computer Science 17.4 (2007): 437-448. <http://eudml.org/doc/207848>.

@article{Zerrik2007,
abstract = {The paper aims at extending the notion of regional controllability developed for linear systems cite to the semilinear hyperbolic case. We begin with an asymptotically linear system and the approach is based on an extension of the Hilbert uniqueness method and Schauder's fixed point theorem. The analytical case is then tackled using generalized inverse techniques and converted to a fixed point problem leading to an algorithm which is successfully implemented numerically and illustrated with examples.},
author = {Zerrik, E., Larhrissi, R., Bourray, H.},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {constrained controllability; distributed parameter systems; semilinear hyperbolic systems; fixed point},
language = {eng},
number = {4},
pages = {437-448},
title = {An output controllability problem for semilinear distributed hyperbolic systems},
url = {http://eudml.org/doc/207848},
volume = {17},
year = {2007},
}

TY - JOUR
AU - Zerrik, E.
AU - Larhrissi, R.
AU - Bourray, H.
TI - An output controllability problem for semilinear distributed hyperbolic systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2007
VL - 17
IS - 4
SP - 437
EP - 448
AB - The paper aims at extending the notion of regional controllability developed for linear systems cite to the semilinear hyperbolic case. We begin with an asymptotically linear system and the approach is based on an extension of the Hilbert uniqueness method and Schauder's fixed point theorem. The analytical case is then tackled using generalized inverse techniques and converted to a fixed point problem leading to an algorithm which is successfully implemented numerically and illustrated with examples.
LA - eng
KW - constrained controllability; distributed parameter systems; semilinear hyperbolic systems; fixed point
UR - http://eudml.org/doc/207848
ER -

References

top
  1. Brezis H. (1993): Analyse fonctionnelle. Théorie et applications. -Paris: Masson. Zbl0511.46001
  2. Da Prato G., Prchard A. and Zabczyk J. (1991): On minimum energy problems. SIAM Journal on Control and Optimization, Vol.29, pp.209-221. Zbl0744.93098
  3. De Souza F.J.A.M., and A.J.Prchard (1985): Control of semilinear distributed parameter systems. Telecommunication and Control, INPE, Sao Jose dos Campos, Brazil, pp. 160-164. 
  4. De Souza F.J.A.M (1985): Control of nonlinear dributed parameter systems.In: Proc. IV Coloquio de Control Automatico (Ibarra-Zannatha, Ed.), Centro de investigation y Estudios Avanzados del instuto Politecnico Nacional de Mexico, Mexico, Vol.1 , pp.37-43. 
  5. El Jai A., Zerrik E., Simon M. C. and Pritchard A. J.(1995): Regional controllability of distributed parameter systems. International Journal of Control, Vol.62, No.6, pp.1351-1365. Zbl0844.93016
  6. Fabre C., Puel J. P. and Zuazua E. (1995): Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh, Vol.125 A, pp.31-61. Zbl0818.93032
  7. E. (1997): Null controllability of the proximate heat equation, ESAIM: Control Optimization and Calculus of Variations, Vol.2, pp.87-103. 
  8. Henry D. (1981): Geometric Theory of Semilinear Parabolic Systems. Zbl0456.35001
  9. Kassara K. and El Jai A. (1983): Algorithme pour la commande d'une classe de systèmes àparamètres répartis non linéaires. Revue marocaine d'automatique, d'informatique et de traitement de signal, Vol.1, No.2, pp.95-117. 
  10. Klamka J. (2002): Constrained exact controllability of semilinear systems. Systems and Control Letters, Vol.47, No.2, pp.139-147. Zbl1003.93005
  11. Klamka J. (2001): Constrained controllability of semilinear systems. Nonlinear Analysis, Vol.47, pp.2939-2949. Zbl1042.93504
  12. Klamka J. (2000): Schauder's fixed point theorem in nonlinear controllability problem. Control and Cybernetics, Vol.29, No.1, pp.153-165. Zbl1011.93001
  13. Klamka J. (1999): Constrained conllability of dynamical systems. International Journal of Applied Mathematics and Computer Science, Vol.9, No.2, pp.231-244. Zbl0959.93004
  14. Klamka J. (1998): Controllability of second order semilinear infinite-dimensional dynamical systems. Applied Mathematics and Computer Science, Vol.8, No.3, pp.459-470. Zbl0911.93015
  15. Klamka J. (1991): Controllability of Dynamical Systems, Dordrecht: Kluwer Academic Publishers. Zbl0732.93008
  16. Lions J.L. (1988): Contrôlabilité Exacte. Perturbations et Stabilisation des Systèmes Distribués, Tome 1, Contrôlabilité Exacte. -Paris: Masson. Zbl0653.93002
  17. Pazy A. (1983): Semigroups of Linear Operators and Applications to Partial Differential Equations. -Berlin: Springer-Verlag. Zbl0516.47023
  18. Zeidler E. (1990): Nonlinear Functional Analysis and Its Applications II/A.Linear Applied Functional Analysis, Springer. 
  19. Zuazua E. (1990): Exact controllability for the semilinear wave equation. Journal de Mathématiques Pures et Appliquées, 69, pp.1-31. Zbl0638.49017
  20. Zeidler E. (1999): Applied Functional Analysis. Applications to Mathematical Physics. - Springer. Zbl0834.46002
  21. Zerrik E., Bourray H. and El Jai A. (2004): Regional observability of semilinear distributed parabolic systems. International Journal of Dynamical and Control Systems, Vol.10, No.3, pp.413-430. Zbl1049.93042
  22. Zerrik E. and Larhrissi R. (2002): Regional boundary controllability of hyperbolic systems. Numerical approach. International Journal of Dynamical and Control Systems, Vol.8, No.3, pp.293-311. Zbl1036.49012
  23. Zerrik E. and Larhrissi R. (2001): Regional Target Control of the wave Equation. International Journal of Systems Science, Vol.32, No.10, pp.1233-1242. Zbl1011.93060
  24. Zerrik E., Boutoulout A. and El Jai A. (2000): Actuators and regional boundary controllability. International Journal of Systems Science, Vol.31, No.1 , pp.73-82 Zbl1080.93651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.