An output controllability problem for semilinear distributed hyperbolic systems
E. Zerrik; R. Larhrissi; H. Bourray
International Journal of Applied Mathematics and Computer Science (2007)
- Volume: 17, Issue: 4, page 437-448
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topZerrik, E., Larhrissi, R., and Bourray, H.. "An output controllability problem for semilinear distributed hyperbolic systems." International Journal of Applied Mathematics and Computer Science 17.4 (2007): 437-448. <http://eudml.org/doc/207848>.
@article{Zerrik2007,
abstract = {The paper aims at extending the notion of regional controllability developed for linear systems cite to the semilinear hyperbolic case. We begin with an asymptotically linear system and the approach is based on an extension of the Hilbert uniqueness method and Schauder's fixed point theorem. The analytical case is then tackled using generalized inverse techniques and converted to a fixed point problem leading to an algorithm which is successfully implemented numerically and illustrated with examples.},
author = {Zerrik, E., Larhrissi, R., Bourray, H.},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {constrained controllability; distributed parameter systems; semilinear hyperbolic systems; fixed point},
language = {eng},
number = {4},
pages = {437-448},
title = {An output controllability problem for semilinear distributed hyperbolic systems},
url = {http://eudml.org/doc/207848},
volume = {17},
year = {2007},
}
TY - JOUR
AU - Zerrik, E.
AU - Larhrissi, R.
AU - Bourray, H.
TI - An output controllability problem for semilinear distributed hyperbolic systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2007
VL - 17
IS - 4
SP - 437
EP - 448
AB - The paper aims at extending the notion of regional controllability developed for linear systems cite to the semilinear hyperbolic case. We begin with an asymptotically linear system and the approach is based on an extension of the Hilbert uniqueness method and Schauder's fixed point theorem. The analytical case is then tackled using generalized inverse techniques and converted to a fixed point problem leading to an algorithm which is successfully implemented numerically and illustrated with examples.
LA - eng
KW - constrained controllability; distributed parameter systems; semilinear hyperbolic systems; fixed point
UR - http://eudml.org/doc/207848
ER -
References
top- Brezis H. (1993): Analyse fonctionnelle. Théorie et applications. -Paris: Masson. Zbl0511.46001
- Da Prato G., Prchard A. and Zabczyk J. (1991): On minimum energy problems. SIAM Journal on Control and Optimization, Vol.29, pp.209-221. Zbl0744.93098
- De Souza F.J.A.M., and A.J.Prchard (1985): Control of semilinear distributed parameter systems. Telecommunication and Control, INPE, Sao Jose dos Campos, Brazil, pp. 160-164.
- De Souza F.J.A.M (1985): Control of nonlinear dributed parameter systems.In: Proc. IV Coloquio de Control Automatico (Ibarra-Zannatha, Ed.), Centro de investigation y Estudios Avanzados del instuto Politecnico Nacional de Mexico, Mexico, Vol.1 , pp.37-43.
- El Jai A., Zerrik E., Simon M. C. and Pritchard A. J.(1995): Regional controllability of distributed parameter systems. International Journal of Control, Vol.62, No.6, pp.1351-1365. Zbl0844.93016
- Fabre C., Puel J. P. and Zuazua E. (1995): Approximate controllability of the semilinear heat equation, Proceedings of the Royal Society of Edinburgh, Vol.125 A, pp.31-61. Zbl0818.93032
- E. (1997): Null controllability of the proximate heat equation, ESAIM: Control Optimization and Calculus of Variations, Vol.2, pp.87-103.
- Henry D. (1981): Geometric Theory of Semilinear Parabolic Systems. Zbl0456.35001
- Kassara K. and El Jai A. (1983): Algorithme pour la commande d'une classe de systèmes àparamètres répartis non linéaires. Revue marocaine d'automatique, d'informatique et de traitement de signal, Vol.1, No.2, pp.95-117.
- Klamka J. (2002): Constrained exact controllability of semilinear systems. Systems and Control Letters, Vol.47, No.2, pp.139-147. Zbl1003.93005
- Klamka J. (2001): Constrained controllability of semilinear systems. Nonlinear Analysis, Vol.47, pp.2939-2949. Zbl1042.93504
- Klamka J. (2000): Schauder's fixed point theorem in nonlinear controllability problem. Control and Cybernetics, Vol.29, No.1, pp.153-165. Zbl1011.93001
- Klamka J. (1999): Constrained conllability of dynamical systems. International Journal of Applied Mathematics and Computer Science, Vol.9, No.2, pp.231-244. Zbl0959.93004
- Klamka J. (1998): Controllability of second order semilinear infinite-dimensional dynamical systems. Applied Mathematics and Computer Science, Vol.8, No.3, pp.459-470. Zbl0911.93015
- Klamka J. (1991): Controllability of Dynamical Systems, Dordrecht: Kluwer Academic Publishers. Zbl0732.93008
- Lions J.L. (1988): Contrôlabilité Exacte. Perturbations et Stabilisation des Systèmes Distribués, Tome 1, Contrôlabilité Exacte. -Paris: Masson. Zbl0653.93002
- Pazy A. (1983): Semigroups of Linear Operators and Applications to Partial Differential Equations. -Berlin: Springer-Verlag. Zbl0516.47023
- Zeidler E. (1990): Nonlinear Functional Analysis and Its Applications II/A.Linear Applied Functional Analysis, Springer.
- Zuazua E. (1990): Exact controllability for the semilinear wave equation. Journal de Mathématiques Pures et Appliquées, 69, pp.1-31. Zbl0638.49017
- Zeidler E. (1999): Applied Functional Analysis. Applications to Mathematical Physics. - Springer. Zbl0834.46002
- Zerrik E., Bourray H. and El Jai A. (2004): Regional observability of semilinear distributed parabolic systems. International Journal of Dynamical and Control Systems, Vol.10, No.3, pp.413-430. Zbl1049.93042
- Zerrik E. and Larhrissi R. (2002): Regional boundary controllability of hyperbolic systems. Numerical approach. International Journal of Dynamical and Control Systems, Vol.8, No.3, pp.293-311. Zbl1036.49012
- Zerrik E. and Larhrissi R. (2001): Regional Target Control of the wave Equation. International Journal of Systems Science, Vol.32, No.10, pp.1233-1242. Zbl1011.93060
- Zerrik E., Boutoulout A. and El Jai A. (2000): Actuators and regional boundary controllability. International Journal of Systems Science, Vol.31, No.1 , pp.73-82 Zbl1080.93651
Citations in EuDML Documents
top- Karima Ztot, El Hassan Zerrik, Hamid Bourray, Regional control problem for distributed bilinear systems: Approach and simulations
- Larbi Afifi, El Mostafa Magri, Abdelhaq El Jai, Weak and exact domination in distributed systems
- Grigory M. Sklyar, Grzegorz Szkibiel, Controlling a non-homogeneous Timoshenko beam with the aid of the torque
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.