Mobile sensor routing for parameter estimation of distributed systems using the parallel tunneling method

Tomasz Zięba; Dariusz Uciński

International Journal of Applied Mathematics and Computer Science (2008)

  • Volume: 18, Issue: 3, page 307-318
  • ISSN: 1641-876X

Abstract

top
The paper deals with the problem of optimal path planning for a sensor network with mutliple mobile nodes, whose measurements are supposed to be primarily used to estimate unknown parameters of a system modelled by a partial differential equation. The adopted framework permits to consider two- or three-dimensional spatial domains and correlated observations. Since the aim is to maximize the accuracy of the estimates, a general functional defined on the relevant Fisher information matrix is used as the design criterion. Central to the approach is the parameterization of the sensor trajectories based on cubic B-splines. The resulting finite-dimensional global optimization problem is then solved using a parallel version of the tunneling algorithm. A numerical example is included to clearly demonstrate the idea presented in the paper.

How to cite

top

Tomasz Zięba, and Dariusz Uciński. "Mobile sensor routing for parameter estimation of distributed systems using the parallel tunneling method." International Journal of Applied Mathematics and Computer Science 18.3 (2008): 307-318. <http://eudml.org/doc/207887>.

@article{TomaszZięba2008,
abstract = {The paper deals with the problem of optimal path planning for a sensor network with mutliple mobile nodes, whose measurements are supposed to be primarily used to estimate unknown parameters of a system modelled by a partial differential equation. The adopted framework permits to consider two- or three-dimensional spatial domains and correlated observations. Since the aim is to maximize the accuracy of the estimates, a general functional defined on the relevant Fisher information matrix is used as the design criterion. Central to the approach is the parameterization of the sensor trajectories based on cubic B-splines. The resulting finite-dimensional global optimization problem is then solved using a parallel version of the tunneling algorithm. A numerical example is included to clearly demonstrate the idea presented in the paper.},
author = {Tomasz Zięba, Dariusz Uciński},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {sensor network; distributed parameter systems; optimum experimental design; tunneling algorithm; parallel computing; sensor network, distributed parameter systems, optimum experimental design, tunneling algorithm, parallel computing},
language = {eng},
number = {3},
pages = {307-318},
title = {Mobile sensor routing for parameter estimation of distributed systems using the parallel tunneling method},
url = {http://eudml.org/doc/207887},
volume = {18},
year = {2008},
}

TY - JOUR
AU - Tomasz Zięba
AU - Dariusz Uciński
TI - Mobile sensor routing for parameter estimation of distributed systems using the parallel tunneling method
JO - International Journal of Applied Mathematics and Computer Science
PY - 2008
VL - 18
IS - 3
SP - 307
EP - 318
AB - The paper deals with the problem of optimal path planning for a sensor network with mutliple mobile nodes, whose measurements are supposed to be primarily used to estimate unknown parameters of a system modelled by a partial differential equation. The adopted framework permits to consider two- or three-dimensional spatial domains and correlated observations. Since the aim is to maximize the accuracy of the estimates, a general functional defined on the relevant Fisher information matrix is used as the design criterion. Central to the approach is the parameterization of the sensor trajectories based on cubic B-splines. The resulting finite-dimensional global optimization problem is then solved using a parallel version of the tunneling algorithm. A numerical example is included to clearly demonstrate the idea presented in the paper.
LA - eng
KW - sensor network; distributed parameter systems; optimum experimental design; tunneling algorithm; parallel computing; sensor network, distributed parameter systems, optimum experimental design, tunneling algorithm, parallel computing
UR - http://eudml.org/doc/207887
ER -

References

top
  1. Atkinson A. C., Donev A. N. and Tobias R. D. (2007). Optimum Experimental Designs, with SAS, Oxford University Press, Oxford. Zbl1183.62129
  2. Banks H. T., Smith R. C. and Wang Y. (1996). Smart Material Structures: Modeling, Estimation and Control, Masson, Paris. Zbl0882.93001
  3. Bertsekas D. P. (1999). Nonlinear Programming, 2nd Edn., Athena Scientific, Belmont, MA. Zbl1015.90077
  4. Cassandras C. G. and Li, W. (2005). Sensor networks and cooperative control, European Journal of Control 11(4-5): 436-463. Zbl1293.93069
  5. Christofides P. D. (2001). Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Birkhäuser, Boston, MA. Zbl1018.93001
  6. Cressie N. A. C. (1993). Statistics for Spatial Data, Revised Edn., John Wiley & Sons, New York, NY. 
  7. Daescu D. N. and Navon I. M. (2004). Adaptive observations in the context of 4D-Var data assimilation, Meteorology and Atmospheric Physics 85(4): 205-226. 
  8. Demetriou M. A. (2006a). Detection and containment policy of moving source in 2D diffusion processes using sensor/actuator network, Proceedings of the European Control Conference 2007, Kos, Greece. Published on CD-ROM. 
  9. Demetriou M. A. (2006b). Power management of sensor networks for detection of a moving source in 2-D spatial domains, Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA. Published on CD-ROM. 
  10. Demetriou M. A. (2007). Process estimation and moving source detection in 2-D diffusion processes by scheduling of sensor networks, Proceedings of the 2007 American Control Conference, New York, NY, USA. Published on CD-ROM. 
  11. Fedorov V. V. and Hackl P. (1997). Model-Oriented Design of Experiments, Lecture Notes in Statistics, Springer-Verlag, New York, NY. Zbl0878.62052
  12. Gómez S., del Castillo N., Castellanos L. and Solano J. (2003). The parallel tunneling method, Parallel Computing 29(4): 523-533. 
  13. Hussein I. I. and Demetriou M. A. (2007). Estimation of distributed processes using mobile spatially distributed sensors, Proceedings of the 2007 American Control Conference, New York, NY, USA. Published on CD-ROM. Zbl1182.93111
  14. Jeremić A. and Nehorai A. (1998). Design of chemical sensor arrays for monitoring disposal sites on the ocean floor, IEEE Transactions on Oceanic Engineering 23(4): 334-343. 
  15. Jeremić A. and Nehorai A. (2000). Landmine detection and localization using chemical sensor array processing, IEEE Transactions on Signal Processing 48(5): 1295-1305. 
  16. Kubrusly C. S. and Malebranche H. (1985). Sensors and controllers location in distributed systems - A survey, Automatica 21(2): 117-128. Zbl0555.93035
  17. Le N. D. and Zidek J. V. (2006). Statistical Analysis of Environmental Space-Time Processes, Springer-Verlag, New York, NY. Zbl1102.62126
  18. Levy A. V. and Montalvo A. (1985). The tunneling algorithm for the global minimization of functions, SIAM Journal on Scientific and Statistical Computing 6(1): 15-29. Zbl0601.65050
  19. Müller W. G. (2007). Collecting Spatial Data. Optimum Design of Experiments for Random Fields, 3rd Revised and Extended Edn., Physica-Verlag, Heidelberg. Zbl1266.62048
  20. Navon I. M. (1997). Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynamics of Atmospheres and Oceans 27(1): 55-79. 
  21. Nehorai A., Porat B. and Paldi E. (1995). Detection and localization of vapor-emitting sources, IEEE Transactions on Signal Processing 43(1): 243-253. 
  22. Pacheco P. S. (1997). Programming parallel with MPI, Morgan Kaufmann, San Francisco, CA. Zbl0877.68013
  23. Papalambros P. Y. and Wilde D. J. (2000). Principles of Optimal Design. Modeling and Computation, 2nd Edn., Cambridge University Press, Cambridge. Zbl0962.90002
  24. Pázman A. (1986). Foundations of Optimum Experimental Design, D. Reidel Publishing Company, Dordrecht. Zbl0588.62117
  25. Porat B. and Nehorai A. (1996). Localizing vapor-emitting sources by moving sensors, IEEE Transactions on Signal Processing 44(4): 1018-1021. 
  26. Press W. H., Teukolsky S. A., Vetterling W. T. and Flannery B. P. (1992). Numerical Recipes in FORTRAN. The Art of Parallel Scientific Computing, 2nd Edn., Cambridge University Press, Cambridge. Zbl0778.65002
  27. Pukelsheim, F. (1993). Optimal Design of Experiments, John Wiley & Sons, New York, NY. Zbl0834.62068
  28. Quarteroni A., Sacco R. and Saleri F. (2000). Numerical Mathematics, Springer-Verlag, New York, NY. Zbl0957.65001
  29. Quereshi Z. H., Ng T. S. and Goodwin G. C. (1980). Optimum experimental design for identification of distributed parameter systems, International Journal of Control 31(1): 21-29. Zbl0431.93017
  30. Rafajłowicz E. (1981). Design of experiments for eigenvalue identification in distributed-parameter systems, International Journal of Control 34(6): 1079-1094. Zbl0476.93071
  31. Rafajłowicz E. (1983). Optimal experiment design for identification of linear distributed-parameter systems: Frequency domain approach, IEEE Transactions on Automatic Control 28(7): 806-808. Zbl0521.93066
  32. Rafajłowicz E. (1986). Optimum choice of moving sensor trajectories for distributed parameter system identification, International Journal of Control 43(5): 1441-1451. Zbl0581.93066
  33. Sacks E. W. (1998). Semi-infinite programming in control, in R. Reemtsen and J.-J. Rückmann (Eds.), Semi-Infinite Programming, Kluwer Academic Publishers, Boston, MA, pp. 389-411. Zbl0911.90331
  34. Scott L. R., Clark T. and Bagheri B. (2005). Scientific Parallel Computing, Princeton University Press, Princeton, NJ. Zbl1067.68074
  35. Sun N.-Z. (1994). Inverse Problems in Groundwater Modeling, Kluwer Academic Publishers, Dordrecht. 
  36. Tricaud C., Patan M., Uciński D. and Chen Y. (2008). D-optimal trajectory design of heterogeneous mobile sensors for parameter estimation of distributed systems, Proceedings of the 2008 American Control Conference, Seattle, WA, USA. Published on CD-ROM. 
  37. Uciński D. (1999). Measurement Optimization for Parameter Estimation in Distributed Systems, Technical University Press, Zielona Góra. 
  38. Uciński D. (2000). Optimal sensor location for parameter estimation of distributed processes, International Journal of Control 73(13): 1235-1248. Zbl1004.93015
  39. Uciński D. (2005). Optimal Measurement Methods for Distributed-Parameter System Identification, CRC Press, Boca Raton, FL. Zbl1155.93003
  40. Uciński D. and Chen Y. (2005). Time-optimal path planning of moving sensors for parameter estimation of distributed systems, Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain. Published on CD-ROM. 
  41. Uciński D. and Chen Y. (2006). Sensor motion planning in distributed parameter systems using Turing's measure of conditioning, Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA. Published on CD-ROM. 
  42. Uciński D. and Demetriou, M. A. (2008). Resource-constrained sensor routing for optimal observation of distributed parameter systems, Proceedings of the 18th International Symposium on Mathematical Theory of Networks and Systems, Blacksburg, VA, USA. Published on CD-ROM. 
  43. Uciński D. and Korbicz J. (2001). Optimal sensor allocation for parameter estimation in distributed systems, Journal of Inverse and Ill-Posed Problems 9(3): 301-317. Zbl0994.35123
  44. Uciński D. and Patan M. (2007). D-optimal design of a monitoring network for parameter estimation of distributed systems, Journal of Global Optimization 39(2): 291-322. Zbl1180.90173
  45. Walter É. and Pronzato L. (1997). Identification of Parametric Models from Experimental Data, Communications and Control Engineering, Springer-Verlag, Berlin. Zbl0864.93014
  46. Wyrzykowski R., Meyer N. and Stroiński M. (2004). Clusterix: National cluster of linux systems, Proceedings of the 2nd European Across Grids 2004 Conference, Nicosia, Cyprus. Available at: http://grid.ucy.ac.cy/axgrids04/AxGrids. 
  47. Zhao F. and Guibas L. J. (2004). Wireless Sensor Networks: An Information Processing Approach, Morgan Kaufmann Publishers, Amsterdam. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.