Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability
Piotr M. Marusak; Piotr Tatjewski
International Journal of Applied Mathematics and Computer Science (2009)
- Volume: 19, Issue: 1, page 127-141
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topPiotr M. Marusak, and Piotr Tatjewski. "Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability." International Journal of Applied Mathematics and Computer Science 19.1 (2009): 127-141. <http://eudml.org/doc/207914>.
@article{PiotrM2009,
abstract = {Dual-mode fuzzy dynamic matrix control (fuzzy DMC-FDMC) algorithms with guaranteed nominal stability for constrained nonlinear plants are presented. The algorithms join the advantages of fuzzy Takagi-Sugeno modeling and the predictive dual-mode approach in a computationally efficient version. Thus, they can bring an improvement in control quality compared with predictive controllers based on linear models and, at the same time, control performance similar to that obtained using more demanding algorithms with nonlinear optimization. Numerical effectiveness is obtained by using a successive linearization approach resulting in a quadratic programming problem solved on-line at each sampling instant. It is a computationally robust and fast optimization problem, which is important for on-line applications. Stability is achieved by appropriate introduction of dual-mode type stabilization mechanisms, which are simple and easy to implement. The effectiveness of the proposed approach is tested on a control system of a nonlinear plant-a distillation column with basic feedback controllers.},
author = {Piotr M. Marusak, Piotr Tatjewski},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {nonlinear systems; fuzzy systems; model predictive control; stability; constrained control; dual-mode control},
language = {eng},
number = {1},
pages = {127-141},
title = {Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability},
url = {http://eudml.org/doc/207914},
volume = {19},
year = {2009},
}
TY - JOUR
AU - Piotr M. Marusak
AU - Piotr Tatjewski
TI - Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability
JO - International Journal of Applied Mathematics and Computer Science
PY - 2009
VL - 19
IS - 1
SP - 127
EP - 141
AB - Dual-mode fuzzy dynamic matrix control (fuzzy DMC-FDMC) algorithms with guaranteed nominal stability for constrained nonlinear plants are presented. The algorithms join the advantages of fuzzy Takagi-Sugeno modeling and the predictive dual-mode approach in a computationally efficient version. Thus, they can bring an improvement in control quality compared with predictive controllers based on linear models and, at the same time, control performance similar to that obtained using more demanding algorithms with nonlinear optimization. Numerical effectiveness is obtained by using a successive linearization approach resulting in a quadratic programming problem solved on-line at each sampling instant. It is a computationally robust and fast optimization problem, which is important for on-line applications. Stability is achieved by appropriate introduction of dual-mode type stabilization mechanisms, which are simple and easy to implement. The effectiveness of the proposed approach is tested on a control system of a nonlinear plant-a distillation column with basic feedback controllers.
LA - eng
KW - nonlinear systems; fuzzy systems; model predictive control; stability; constrained control; dual-mode control
UR - http://eudml.org/doc/207914
ER -
References
top- Blevins, T., McMillan, G., Wojsznis, W. and Brown, M. (2003). Advanced Control Unleashed, ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC.
- Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer-Verlag, London. Zbl1223.93037
- Cao, S., Rees, N. and Feng, G. (1997). Analysis and design for a class of complex control systems. Part I: Fuzzy modelling and identification, Automatica 33(6): 1017-1028. Zbl0887.93035
- Chen, J., Xi, Y. and Zhang, Z. (1998). A clustering algorithm for fuzzy model identification, Fuzzy Sets and Systems 98(3): 319-329.
- Cutler, C. and Ramaker, B. (1980). Dynamic matrix control - A computer control algorithm, Proceedings of the Joint Automatic Control Conference, San Francisco, CA, USA, paper no. WP5-B.
- Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993). An Introduction to Fuzzy Control, Springer-Verlag, Berlin. Zbl0789.93088
- Garcia, C. (1984). Quadratic dynamic matrix control of nonlinear processes: An application to a batch reaction process, Proceedings of the AIChE Annual Meeting, San Francisco, CA, USA, paper no. 82f.
- Garcia, C. and Morshedi, A. (1986). Quadratic programming solution of dynamic matrix control (QDMC), Chemical Engineering Communications 46(1-3): 73-87.
- Gattu, G. and Zafiriou, E. (1992). Nonlinear quadratic dynamic matrix control with state estimation, Industrial and Engineering Chemistry Research 31(4): 1096-1104.
- Lee, J. and Ricker, N. (1994). Extended Kalman filter based nonlinear model predictive control, Industrial and Engineering Chemistry Research 33(6): 1530-1541.
- Li, W. and Biegler, L. (1989). Multistep, Newton-type control strategies for constrained, nonlinear processes, Chemical Engineering Research and Design 67(Nov.): 562-577.
- Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow. Zbl0978.93002
- Marusak, P. (2002). Predictive control of nonlinear plants using dynamic matrix and fuzzy modeling, Ph.D. thesis, Warsaw University of Technology, Warsaw, (in Polish).
- Marusak, P. and Tatjewski, P. (2000). Fuzzy dynamic matrix control algorithms for nonlinear plants, Proceedings of the 6-th International Conference on Methods and Models in Automation and Robotics MMAR 2000, Mi˛edzyzdroje, Poland, pp. 749-754.
- Marusak, P. and Tatjewski, P. (2001). Stability analysis of nonlinear control systems with fuzzy DMC controllers, Proceedings of the IFAC Workshop on Advanced Fuzzy and Neural Control, AFNC'01, Valencia, Spain, pp. 21-26.
- Marusak, P. and Tatjewski, P. (2002). Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers, Archives of Control Sciences 12(3): 267-288. Zbl1151.93378
- Marusak, P. and Tatjewski, P. (2003). Stable, effective fuzzy DMC algorithms with on-line quadratic optimization, Proceedings of the American Control Conference, ACC 2003, Denver, CO, USA, pp. 3513-3518.
- Mayne, D., Rawlings, J., Rao, C. and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality, Automatica 36(6): 789-814. Zbl0949.93003
- Michalska, H. and Mayne, D. (1993). Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control 38(11): 1623-1632. Zbl0790.93038
- Morari, M. and Lee, J. (1999). Model predictive control: Past, present and future, Computers and Chemical Engineering 23(4): 667-682.
- Mutha, R., Cluett, W. and Penlidis, A. (1997). Nonlinear modelbased predictive control of control nonaffine systems, Automatica 33(5): 907-913. Zbl0874.93048
- Mutha, R., Cluett, W. and Penlidis, A. (1998). Modifying the prediction equation for nonlinear model-based predictive control, Automatica 34(10): 1283-1287. Zbl0938.93522
- Piegat, A. (2001). Fuzzy Modeling and Control, Physica-Verlag, Berlin. Zbl0976.93001
- Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.
- Scokaert, P., Mayne, D. and Rawlings, J. (1999). Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control 44(3): 648-654. Zbl1056.93619
- Setnes, M. and Roubos, H. (2000). GA-fuzzy modeling and classification: Complexity and performance, IEEE Transactions on Fuzzy Systems 8(5): 509-522.
- Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116-132. Zbl0576.93021
- Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135-156. Zbl0758.93042
- Tatjewski, P. (2007). Advanced Control of Industrial Processes; Structures and Algorithms, Springer-Verlag, London. Zbl1134.93037
- Yager, R. and Filev, D. (1994). Essentials of Fuzzy Modeling and Control, Wiley, New York, NY.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.