Protector control: Extension to a class of nonlinear distributed systems

Youssef Qaraai; Abdes Samed Bernoussi

International Journal of Applied Mathematics and Computer Science (2010)

  • Volume: 20, Issue: 3, page 427-443
  • ISSN: 1641-876X

Abstract

top
We present an extension of the protector control scheme introduced for the linear case in a previous work to a class of nonlinear systems. The systems considered are assumed to have a finite propagation velocity while the initial state is subject to a spreading disturbance. We characterize such a control first by using the remediability approach to the resulting nonlinear delay system, and then by coupling families of transformations and the delay approach. To illustrate this work, we provide a simulation example.

How to cite

top

Youssef Qaraai, and Abdes Samed Bernoussi. "Protector control: Extension to a class of nonlinear distributed systems." International Journal of Applied Mathematics and Computer Science 20.3 (2010): 427-443. <http://eudml.org/doc/207998>.

@article{YoussefQaraai2010,
abstract = {We present an extension of the protector control scheme introduced for the linear case in a previous work to a class of nonlinear systems. The systems considered are assumed to have a finite propagation velocity while the initial state is subject to a spreading disturbance. We characterize such a control first by using the remediability approach to the resulting nonlinear delay system, and then by coupling families of transformations and the delay approach. To illustrate this work, we provide a simulation example.},
author = {Youssef Qaraai, Abdes Samed Bernoussi},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {nonlinear distributed systems; disturbance; spreadability; vulnerability; remediability; protector control},
language = {eng},
number = {3},
pages = {427-443},
title = {Protector control: Extension to a class of nonlinear distributed systems},
url = {http://eudml.org/doc/207998},
volume = {20},
year = {2010},
}

TY - JOUR
AU - Youssef Qaraai
AU - Abdes Samed Bernoussi
TI - Protector control: Extension to a class of nonlinear distributed systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2010
VL - 20
IS - 3
SP - 427
EP - 443
AB - We present an extension of the protector control scheme introduced for the linear case in a previous work to a class of nonlinear systems. The systems considered are assumed to have a finite propagation velocity while the initial state is subject to a spreading disturbance. We characterize such a control first by using the remediability approach to the resulting nonlinear delay system, and then by coupling families of transformations and the delay approach. To illustrate this work, we provide a simulation example.
LA - eng
KW - nonlinear distributed systems; disturbance; spreadability; vulnerability; remediability; protector control
UR - http://eudml.org/doc/207998
ER -

References

top
  1. Afifi, L., Chafiai, A. and El Jai, A. (2002). Regionally efficient and strategic actuators, International Journal of Systems Science 33(4): 1-12. Zbl1013.93029
  2. Afifi, L., El Jai, A. and Merry, M. (2000). Detection and sources reconstruction in a tube, International Journal of Systems Science 31(2): 149-159. 
  3. Afifi, L., El Jai, A. and Merry, M. (2001). Regional detection and reconstruction of unknown internal or boundary sources, International Journal of Applied Mathematics and Computer Science 11(2): 319-348. Zbl0979.93052
  4. Beltrami, E. (1987). Mathematics for Dynamic Modelling, Academic Press, San Diego, CA. Zbl0625.58012
  5. Bernoussi, A. (2007). Spreadability and vulnerability of distributed parameter systems, International Journal of Systems Science 38(4): 305-317. Zbl1115.93007
  6. Bernoussi, A. and Amharref, M. (2003). Etalabilité-vulnrabilité, Annals of University of Craiova, Mathematics and Computer Science Series 30(4): 53-62. 
  7. Bernoussi, A. and El Jai, A. (2000). New approach of spreadability, Journal of Mathematical and Computer Modelling 31(13): 93-109. Zbl0960.93018
  8. Bernoussi, A., El Jai, A. and Pritchard, A. J. (2001). Spreadability and evolving interfaces, International Journal of Systems Science 32(10): 1217-1232. Zbl1014.93015
  9. Bernoussi, A. (2010). Spreadability, vulnerability and protector control, Mathematical Modelling of Natural Phenomena 5(7): 145-150, DOI: 10.1051/mmnp/20105724. 
  10. Curtain, R.F. and Pritchard, A.J. (1978). Infinite Dimensional Linear Systems Theory, Springer, Berlin. Zbl0389.93001
  11. Dautray, R.F. and Lions, J.. (1984). Analyse mathématique et calcul numérique pour les sciences et les techniques, Série Scientifique, Tome 3, Masson, Paris. Zbl0642.35001
  12. Diaz, J.I. and Lions, J. L. (1993). Mathematics Climate and Environment, Research in Applied Mathematics, RMA 27, Masson, Paris. Zbl0782.00023
  13. El Jai, A. (2002). Analyse régionale des systémes distribuès, SMAI (Société de Mathématiques Appliquées et Industrielles), ESAIM-European Series in Applied and Industrial Mathematics 8: 663-692. 
  14. El Jai, A. (2004). Eléments d'Analyse et Contrôle des Systèmes, Collection études, University of Perpignan Press, Perpignan. 
  15. El Jai, A. and Kassara, K. (1994). Spreadable distributed systems, Mathematical and Computer Modelling 20(1): 47-64. Zbl0829.92018
  16. El Jai, A. and Kassara, K. (1996). Spreadability of transport systems, International Journal of Systems Science 27(7): 681-688. Zbl0857.35125
  17. El Jai, A. and Pritchard, A.J. (1986). Capteurs et actionneurs dans l'analyse des systems distribués, RMA 3, Masson, Paris. Zbl0627.93001
  18. El Jai, A., Simon, M., Zerrik, E. and Pritchard, A.J. (1995). Regional controllability of distributed systems, International Journal of Control 62(6): 1351-1365. Zbl0844.93016
  19. Giuggioli, L. and Kenkre, V.M. (2003). Analytic solutions of a nonlinear convective equation in population dynamics, Physica D 183: 245-259. Zbl1059.92043
  20. Henry, D. (1981). Geometric Theory of Semilinear Parabolic Systems, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin/New York, NY. Zbl0456.35001
  21. Ichikawa, A. (1982). Quadratic control of evolution equations with delays in control, SIAM Journal Control and Optimization 20(5): 645-668. Zbl0495.49006
  22. Kenkre, V.M. (2004). Results from variants of the Fisher equation in the study of epidemics and bacteria, Physica A 342: 242-248. 
  23. Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, NY, Berlin/Heidelberg/Tokyo. Zbl0516.47023
  24. Qaraai, Y. (2008). Compensation des perturbations étalables et contrôle protecteur des zones vulnrables, Ph.D. thesis, Faculty of Sciences and Techniques of Tangier, Morocco. 
  25. Qaraai, Y., Bernoussi, A. and El Jai, A. (2006). Contrôle protecteur et remdiabilité, Proceeding of the 3rd International Congress on Scientific Advances in Civil and Industrial Engineering, Algeciras, Spain, pp. 108-114. 
  26. Qaraai, Y., Bernoussi, A. and El Jai, A. (2008). How to compensate a spreading disturbance for a class of nonlinear systems, International Journal Applied Mathematics and Computer Science 18(2): 171-187, DOI: 10.2478/v10006008-0016-9. Zbl1234.93077
  27. Qaraai, Y., Bernoussi, A. and El Jai, A. (2009). Protector control for a class of nonlinear systems, Proceeding of the International Conference on Systems Theory: Modeling, Analysis and Control, Fes2009, Fes, Morocco, pp. 265-272. 
  28. Smart, D.R. (1994). Fixed Point Theorems, Cambridge University Press, London. Zbl0427.47036
  29. Zerrik, E., El Jai, A. and Amouroux, M. (1994). Regional observability of distributed systems, International Journal of Systems Science 25(6): 301-313. Zbl0812.93015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.