Analysis of correlation based dimension reduction methods
Yong Joon Shin; Cheong Hee Park
International Journal of Applied Mathematics and Computer Science (2011)
- Volume: 21, Issue: 3, page 549-558
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Anton, H. and Busby, R. (2003). Contemporary Linear Algebra, John Wiley and Sons, Denver, CO. Zbl1008.15001
- Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis using a kernel approach, Neural Computation 12(10): 2385-2404.
- Billings, S. and Lee, K. (2002). Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm, Neural Networks 15(2): 263-270.
- Chen, L., Liao, H., M.Ko, Lin, J. and Yu, G. (2000). A new LDA-based face recognition system which can solve the small sample size problem, Pattern Recognition 33(10): 1713-1726.
- Duda, R., Hart, P. and Stork, D. (2001). Pattern Classification, Wiley Interscience, New York, NY. Zbl0968.68140
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, 2nd Edn., Academic Press, San Diego, CA. Zbl0711.62052
- Fukunaga, K. and Mantock, J. (1983). Nonparametric discriminant analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 5(6): 671-678. Zbl0542.62047
- Garthwaite, P. (1994). An interpretation of partial least squares, Journal of the American Statistical Society 89(425): 122-127. Zbl0793.62034
- He, X. and Niyogi, P. (2003). Locality preserving projections, Proceedings of the Advances in Neural Information Processing Systems Conference, Vancouver, Canada, pp. 153-160.
- Hotelling, H. (1936). Relations between two sets of variates, Biometrika 28(3): 321-377. Zbl0015.40705
- Hou, C., Nie, F., Zhang, C. and Wu, Y. (2009). Learning an orthogonal and smooth subspace for image classification, IEEE Signal Processing Letters 16(4): 303-306.
- Howland, P. and Park, H. (2004). Generalizing discriminant analysis using the generalized singular value decomposition, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8): 995-1006.
- Jolliffe, I. (1986). Principal Component Analysis, Springer, New York, NY. Zbl1011.62064
- Nie, F., Xiang, S. and Zhang, C. (2007). Neighborhood minmax projections, Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 993-998.
- Pardalos, P. and Hansen, P. (2008). Data Mining and Mathematical Programming, CRM Proceedings & Lecture Notes, Vol. 45, American Mathematical Society, Montreal.
- Park, C. and Park, H. (2008). A comparison of generalized linear discriminant analysis algorithms, Pattern Recognition 41(3): 1083-1097. Zbl1132.68656
- Roweis, S.T. and Saul, L.K. (2000). Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500): 2323-2326.
- Sugiyama, M. (2006). Local fisher discriminant analysis for supervised dimensionality reduction, Proceedings of the IEEE International Conference on Machine Learning, Pittsburgh, PA, USA, pp. 905-912.
- Sun, Q., Zeng, S., Liu, Y., Heng, P. and Xia, D. (2005). A new method of feature fusion and its application in image recognition, Pattern Recognition 38(12): 2437-2448.
- Sun, T. and Chen, S. (2007). Class label versus sample label-based CCA, Applied Mathematics and Computation 185(1): 272-283. Zbl1109.62053
- Sun, T., Chen, S., Yang, J. and Shi, P. (2008). A supervised combined feature extraction method for recognition, Procedings of the IEEE International Conference on Data Mining, Pisa, Italy, pp. 1043-1048.
- Tenenbaum, J.B., de Silva, V. and Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality reduction, Science 290(5500): 2319-2323.
- Wegelin, J. (2000). A survey of partial least squares (PLS) methods, with emphasis on the two block case, Technical report, Department of Statistics, University of Washington, Seattle, WA.
- Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q. and Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionlity reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1): 40-51.
- Yang, J. and Yang, J.-Y. (2003). Why can LDA be performed in PCA transformed space?, Pattern Recognition 36(2): 563-566.
- Yang, J., Yang, J., Zhang, D. and Lu, J. (2003). Feature fusion: Parallel strategy vs. serial strategy, Pattern Recognition 36(6): 1369-1381. Zbl1028.68152
- Ye, J. (2005). Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems, Journal of Machine Learning Research 6(4): 483-502. Zbl1222.62081
- Yu, H. and Yang, J. (2001). A direct LDA algorithm for highdimensional data-with application to face recognition, Pattern Recognition 34(10): 2067-2070. Zbl0993.68091
Citations in EuDML Documents
top- Rasa Karbauskaitė, Gintautas Dzemyda, Optimization of the maximum likelihood estimator for determining the intrinsic dimensionality of high-dimensional data
- Navdeep Goel, Kulbir Singh, A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics
- Tomasz Górecki, Maciej Łuczak, Linear discriminant analysis with a generalization of the Moore-Penrose pseudoinverse
- Francisco A. Pujol, Higinio Mora, José A. Girona-Selva, A connectionist computational method for face recognition