Adaptive control scheme based on the least squares support vector machine network

Tarek A. Mahmoud

International Journal of Applied Mathematics and Computer Science (2011)

  • Volume: 21, Issue: 4, page 685-696
  • ISSN: 1641-876X

Abstract

top
Recently, a new type of neural networks called Least Squares Support Vector Machines (LS-SVMs) has been receiving increasing attention in nonlinear system identification and control due to its generalization performance. This paper develops a stable adaptive control scheme using the LS-SVM network. The developed control scheme includes two parts: the identification part that uses a modified structure of LS-SVM neural networks called the multi-resolution wavelet least squares support vector machine network (MRWLS-SVM) as a predictor model, and the controller part that is developed to track a reference trajectory. By means of the Lyapunov stability criterion, stability analysis for the tracking errors is performed. Finally, simulation studies are performed to demonstrate the capability of the developed approach in controlling a pH process.

How to cite

top

Tarek A. Mahmoud. "Adaptive control scheme based on the least squares support vector machine network." International Journal of Applied Mathematics and Computer Science 21.4 (2011): 685-696. <http://eudml.org/doc/208080>.

@article{TarekA2011,
abstract = {Recently, a new type of neural networks called Least Squares Support Vector Machines (LS-SVMs) has been receiving increasing attention in nonlinear system identification and control due to its generalization performance. This paper develops a stable adaptive control scheme using the LS-SVM network. The developed control scheme includes two parts: the identification part that uses a modified structure of LS-SVM neural networks called the multi-resolution wavelet least squares support vector machine network (MRWLS-SVM) as a predictor model, and the controller part that is developed to track a reference trajectory. By means of the Lyapunov stability criterion, stability analysis for the tracking errors is performed. Finally, simulation studies are performed to demonstrate the capability of the developed approach in controlling a pH process.},
author = {Tarek A. Mahmoud},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {least squares support vector machine; multi-resolution wavelet least squares support vector machine neural network; nonlinear system modeling and control; pH control},
language = {eng},
number = {4},
pages = {685-696},
title = {Adaptive control scheme based on the least squares support vector machine network},
url = {http://eudml.org/doc/208080},
volume = {21},
year = {2011},
}

TY - JOUR
AU - Tarek A. Mahmoud
TI - Adaptive control scheme based on the least squares support vector machine network
JO - International Journal of Applied Mathematics and Computer Science
PY - 2011
VL - 21
IS - 4
SP - 685
EP - 696
AB - Recently, a new type of neural networks called Least Squares Support Vector Machines (LS-SVMs) has been receiving increasing attention in nonlinear system identification and control due to its generalization performance. This paper develops a stable adaptive control scheme using the LS-SVM network. The developed control scheme includes two parts: the identification part that uses a modified structure of LS-SVM neural networks called the multi-resolution wavelet least squares support vector machine network (MRWLS-SVM) as a predictor model, and the controller part that is developed to track a reference trajectory. By means of the Lyapunov stability criterion, stability analysis for the tracking errors is performed. Finally, simulation studies are performed to demonstrate the capability of the developed approach in controlling a pH process.
LA - eng
KW - least squares support vector machine; multi-resolution wavelet least squares support vector machine neural network; nonlinear system modeling and control; pH control
UR - http://eudml.org/doc/208080
ER -

References

top
  1. Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function-Algorithms, Plenum Press, New York, NY. Zbl0503.68069
  2. Faanes, A. and Skogestad, S. (2004). pH-neutralization: Integrated process and control design, Computers and Chemical Engineering 28(8): 1475-1487. 
  3. Ge, S.S. and Wang, C. (2004). Adaptive neural control of uncertain MIMO nonlinear systems, IEEE Transactions on Neural Networks 15(3): 674-692. 
  4. Ge, S.S., Yang, C. and Lee, T.H. (2008). Adaptive predictive control using neural network for a class of pure-feedback systems in discrete time, IEEE Transactions on Neural Networks 19(9): 1599-1614. 
  5. Henson, M.A. and Seborg, D.E. (1994). Adaptive nonlinear control of a pH neutralization process, IEEE Transactions on Control System Technology 2(3): 169-182. 
  6. Huicheng, W.L.L. and Taiyi, Z. (2008). An improved algorithm on least squares support vector machines, Information Technology Journal 7(2): 370-373. 
  7. Ku, C.-C., and Lee, K.Y. (1995). Diagonal recurrent neural networks for dynamic systems control, IEEE Transactions on Neural Networks 6(1): 144-156. 
  8. Li-Juan, L., Hong-Y, S. and Jian, C. (2007). Generalized predictive control with online least squares support machines, Acta Automatica Sinica 33(11): pp. 1182-1188. Zbl1164.93376
  9. Li, X., Yi Cao, G. and Jian Zhu, X. (2006). Modeling and control of PEMFC based on least squares support vector machines, Energy Conversion and Management 47(7-8): 1032-1050. 
  10. Mahmoud, T.A. (2010). Multi resolution wavelet least squares support vector machine network for nonlinear system modeling, Proceedings of the 15th International Conference in Automation and Robotics MMAR2010, Międzyzdroje, Poland, pp. 405-410. 
  11. Nie, J., Loh, A. and Hang, C. (1996). Modeling pH neutralization processes using fuzzy-neural approaches, Fuzzy Sets and Systems 78(1): 5-22. 
  12. Parisini, T. and Zoppoli, R. (1994). Neural networks for feedback feedforward nonlinear control systems, IEEE Transactions on Neural Networks 5(3): 437-449. Zbl0814.93064
  13. Robert, M.S. and Jean-Jacques, E.S. (1992). Gaussian networks for direct adaptive control, IEEE Transactions on Neural Networks 3(6): 837-863. 
  14. Saunders, C., Gammerman, A. and Vovk, V. (1998). Ridge regression learning algorithm in dual variables, Proceedings of the 15th International Conference on Machine Learning ICML-98, Madison, WI, USA, pp. 515-521. 
  15. Suykens, J.A.K. (2001). Nonlinear modeling and support vector machines, IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, pp. 287-294. 
  16. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B. and Vandewalle, J. (2002). Least Squares Support Vector Machines, World Scientific, Singapore. Zbl1017.93004
  17. Suykens, J.A.K. and Vandewalle, J. (1999). Least squares support vector machine classifiers, Neural Processing Letters 9(3): 293-300. Zbl0958.93042
  18. Suykens, J.A.K., Vandewalle, J. and Moor, B.D. (2001). Optimal control by least squares support vector machines, Neural Networks 14: 23-35. 
  19. Vapnik, V. (1998). Statistical Learning Theory, John Wiley, New York, NY. Zbl0935.62007
  20. Wang, Y.-N. and Yuan, X.-F. (2008). SVM approximate-based internal model control strategy, Acta Automatica Sinica 34(2): 696-702. 
  21. Wang, Y., Rong, G. and Wang, S. (2002). Hybrid fuzzy modeling of chemical processes, Fuzzy Sets and Systems 130 (2-1): 265-275. Zbl1027.93004
  22. Yoo, S.J., Park, J.B., and Choi, Y.H. (2005). Stable predictive control of chaotic systems using self-recurrent wavelet neural networks, International Journal of Control, Automation, and Systems 3(1): 43-55. 
  23. Zhang, L., Zhou, W. and Jiao, L. (2004). Wavelet support vector machine, IEEE Transactions on Systems Man, and Cybernetics 34(1): 34-39. 
  24. Zhang, R. and Wang, S. (2008). Support vector machine based predictive functional control design for output temperature of coking furnace, Journal of Process Control 18(5): 439-448. 
  25. Zhang, X.-G., Gao, D., Zhang, X.-G. and Ren, S.S. (2005). Robust wavelet support vector machine for regression estimation, International Journal of Information Technology 11(9): 35-45. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.