Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem
Annales Polonici Mathematici (2000)
- Volume: 74, Issue: 1, page 117-132
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topJakubczyk, B.. "Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem." Annales Polonici Mathematici 74.1 (2000): 117-132. <http://eudml.org/doc/208360>.
@article{Jakubczyk2000,
abstract = {We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.},
author = {Jakubczyk, B.},
journal = {Annales Polonici Mathematici},
keywords = {control systems; Cartan-Kähler theorem; power series; convergence; commutators; Cauchy estimates; vector fields; formal and analytic vector field; analyticity of formal solution; nonlinear singular partial differential equations},
language = {eng},
number = {1},
pages = {117-132},
title = {Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem},
url = {http://eudml.org/doc/208360},
volume = {74},
year = {2000},
}
TY - JOUR
AU - Jakubczyk, B.
TI - Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 117
EP - 132
AB - We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.
LA - eng
KW - control systems; Cartan-Kähler theorem; power series; convergence; commutators; Cauchy estimates; vector fields; formal and analytic vector field; analyticity of formal solution; nonlinear singular partial differential equations
UR - http://eudml.org/doc/208360
ER -
References
top- [CGM] F. Celle, J.-P. Gauthier and E. Milani, Existence of realizations of nonlinear input-output maps, IEEE Trans. Automat. Control. AC-31 (1986), 378-381. Zbl0587.93016
- [C] W. L. Chow, Ueber Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98-105. Zbl65.0398.01
- [F] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Invent. Math. 71 (1983), 521-537. Zbl0513.93014
- [G] A. M. Gabrielov, Formal relations between analytic functions, Math. USSR-Izv. 37 (1973), 1056-1088. Zbl0297.32007
- [J1] B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems, SIAM J. Control Optim. 18 (1980), 455-471. Zbl0447.93012
- [J2] B. Jakubczyk, Réalisations locales des opérateurs causals non linéaires, C. R. Acad. Sci. Paris 299 (1984), 787-789. Zbl0576.93014
- [J3] B. Jakubczyk, Local realizations of nonlinear causal operators, SIAM J. Control Optim. 24 (1986), 230-242. Zbl0613.93010
- [J4] B. Jakubczyk, Realizations of nonlinear systems; three approaches, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, 1986, 3-31.
- [K] A. Krener, A generalization of Chow's theorem and the bang-bang theorem to nonlinear control problems, SIAM J. Control 12 (1974), 43-52. Zbl0243.93008
- [Ma] B. Malgrange, Equation de Lie. II, J. Differential Geometry 7 (1972), 117-141.
- [Mo1] T. Morimoto, Théorème de Cartan-Kähler dans une classe de fonctions formelles Gevrey, C. R. Acad. Sci. Paris Sér. A 311 (1990), 433-436. Zbl0714.58060
- [Mo2] T. Morimoto, Théorème d'existence de solutions analytiques pour des systèmes d'équations aux dérivées partielles non-linéaires avec singularités, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1491-1496.
- [N] T. Nagano, Linear differential systems with singularities and applications to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404. Zbl0147.23502
- [R] P. K. Rashevskiĭ, On joining two points of a completely nonholonomic space by an admissible curve, Uchen. Zapiski Pedagog. Inst. im. Liebknechta Ser. Fiz.-Mat. 1938, no. 2, 83-94 (in Russian).
- [St1] R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geometry 24 (1986), 221-263. Zbl0609.53021
- [St2] R. S. Strichartz, Corrections to 'Sub-Riemannian geometry', ibid. 30 (1989), 595-596.
- [S1] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
- [S2] H. J. Sussmann, unpublished manuscript.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.