Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem

B. Jakubczyk

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 117-132
  • ISSN: 0066-2216

Abstract

top
We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.

How to cite

top

Jakubczyk, B.. "Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem." Annales Polonici Mathematici 74.1 (2000): 117-132. <http://eudml.org/doc/208360>.

@article{Jakubczyk2000,
abstract = {We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.},
author = {Jakubczyk, B.},
journal = {Annales Polonici Mathematici},
keywords = {control systems; Cartan-Kähler theorem; power series; convergence; commutators; Cauchy estimates; vector fields; formal and analytic vector field; analyticity of formal solution; nonlinear singular partial differential equations},
language = {eng},
number = {1},
pages = {117-132},
title = {Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem},
url = {http://eudml.org/doc/208360},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Jakubczyk, B.
TI - Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 117
EP - 132
AB - We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.
LA - eng
KW - control systems; Cartan-Kähler theorem; power series; convergence; commutators; Cauchy estimates; vector fields; formal and analytic vector field; analyticity of formal solution; nonlinear singular partial differential equations
UR - http://eudml.org/doc/208360
ER -

References

top
  1. [CGM] F. Celle, J.-P. Gauthier and E. Milani, Existence of realizations of nonlinear input-output maps, IEEE Trans. Automat. Control. AC-31 (1986), 378-381. Zbl0587.93016
  2. [C] W. L. Chow, Ueber Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98-105. Zbl65.0398.01
  3. [F] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Invent. Math. 71 (1983), 521-537. Zbl0513.93014
  4. [G] A. M. Gabrielov, Formal relations between analytic functions, Math. USSR-Izv. 37 (1973), 1056-1088. Zbl0297.32007
  5. [J1] B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems, SIAM J. Control Optim. 18 (1980), 455-471. Zbl0447.93012
  6. [J2] B. Jakubczyk, Réalisations locales des opérateurs causals non linéaires, C. R. Acad. Sci. Paris 299 (1984), 787-789. Zbl0576.93014
  7. [J3] B. Jakubczyk, Local realizations of nonlinear causal operators, SIAM J. Control Optim. 24 (1986), 230-242. Zbl0613.93010
  8. [J4] B. Jakubczyk, Realizations of nonlinear systems; three approaches, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, 1986, 3-31. 
  9. [K] A. Krener, A generalization of Chow's theorem and the bang-bang theorem to nonlinear control problems, SIAM J. Control 12 (1974), 43-52. Zbl0243.93008
  10. [Ma] B. Malgrange, Equation de Lie. II, J. Differential Geometry 7 (1972), 117-141. 
  11. [Mo1] T. Morimoto, Théorème de Cartan-Kähler dans une classe de fonctions formelles Gevrey, C. R. Acad. Sci. Paris Sér. A 311 (1990), 433-436. Zbl0714.58060
  12. [Mo2] T. Morimoto, Théorème d'existence de solutions analytiques pour des systèmes d'équations aux dérivées partielles non-linéaires avec singularités, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1491-1496. 
  13. [N] T. Nagano, Linear differential systems with singularities and applications to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404. Zbl0147.23502
  14. [R] P. K. Rashevskiĭ, On joining two points of a completely nonholonomic space by an admissible curve, Uchen. Zapiski Pedagog. Inst. im. Liebknechta Ser. Fiz.-Mat. 1938, no. 2, 83-94 (in Russian). 
  15. [St1] R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geometry 24 (1986), 221-263. Zbl0609.53021
  16. [St2] R. S. Strichartz, Corrections to 'Sub-Riemannian geometry', ibid. 30 (1989), 595-596. 
  17. [S1] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188. 
  18. [S2] H. J. Sussmann, unpublished manuscript. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.