Convergence of formal solutions of first order singular nonlinear partial differential equations in the complex domain
Annales Polonici Mathematici (2000)
- Volume: 74, Issue: 1, page 215-228
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [G-T 1] R. Gérard and H. Tahara, Singular Nonlinear Partial Differential Equations in Complex Domain, Vieweg, 1996. Zbl0874.35001
- [G-T 2] R. Gérard and H. Tahara, Formal power series solutions of nonlinear first order partial differential equations, Funkcial. Ekvac. 41 (1998), 133-166. Zbl1142.35310
- [H 1] M. Hibino, Gevrey asymptotic expansion for singular first order linear partial differential equations of nilpotent type, Master Thesis, Grad. School of Math., Nagoya Univ., 1998 (in Japanese).
- [H 2] M. Hibino, Divergence property of formal solutions for singular first order linear partial differential equations, Publ. RIMS Kyoto Univ. 35 (1999), 893-919. Zbl0956.35024
- [M] M. Miyake, Newton polygons and formal Gevrey indices in the Cauchy-Goursat-Fuchs type equations, J. Math. Soc. Japan 43 (1991), 305-330. Zbl0743.35015
- [M-H] M. Miyake and Y. Hashimoto, Newton polygons and Gevrey indices for linear partial differential operators, Nagoya Math. J. 128 (1992), 15-47. Zbl0815.35007
- [O] T. Oshima, On the theorem of Cauchy-Kowalevski for first order linear differential equations with degenerate principal symbols, Proc. Japan Acad. 49 (1973), 83-87. Zbl0283.35002
- [R] J. P. Ramis, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984). Zbl0555.47020
- [S 1] A. Shirai, Convergence of formal solutions to nonlinear first order singular partial differential equations, Master Thesis, Grad. School of Math., Nagoya Univ., 1998 (in Japanese).
- [S 2] A. Shirai, Maillet type theorem for nonlinear partial differential equations and the Newton polygons, J. Math. Soc. Japan, submitted. Zbl0995.35002