# Set arithmetic and the enclosing problem in dynamics

Marian Mrozek; Piotr Zgliczyński

Annales Polonici Mathematici (2000)

- Volume: 74, Issue: 1, page 237-259
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topMrozek, Marian, and Zgliczyński, Piotr. "Set arithmetic and the enclosing problem in dynamics." Annales Polonici Mathematici 74.1 (2000): 237-259. <http://eudml.org/doc/208369>.

@article{Mrozek2000,

abstract = {We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.},

author = {Mrozek, Marian, Zgliczyński, Piotr},

journal = {Annales Polonici Mathematici},

keywords = {dynamical systems; interval arithmetic; rigorous numerical analysis; enclosing problem; computer assisted proofs; set arithmetic},

language = {eng},

number = {1},

pages = {237-259},

title = {Set arithmetic and the enclosing problem in dynamics},

url = {http://eudml.org/doc/208369},

volume = {74},

year = {2000},

}

TY - JOUR

AU - Mrozek, Marian

AU - Zgliczyński, Piotr

TI - Set arithmetic and the enclosing problem in dynamics

JO - Annales Polonici Mathematici

PY - 2000

VL - 74

IS - 1

SP - 237

EP - 259

AB - We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.

LA - eng

KW - dynamical systems; interval arithmetic; rigorous numerical analysis; enclosing problem; computer assisted proofs; set arithmetic

UR - http://eudml.org/doc/208369

ER -

## References

top- [1] R. Anguelov, Wrapping function of the initial value problem for ODE: Applications, Reliab. Comput. 5 (1999), 143-164. Zbl0937.65073
- [2] R. Anguelov and S. Markov, Wrapping effect and wrapping function, ibid. 4 (1998), 311-330. Zbl0919.65047
- [3] G. F. Corliss and R. Rihm, Validating an a priori enclosure using high-order Taylor series, in: Scientific Computing and Validated Numerics (Wuppertal, 1995), Math. Res. 90, Akademie-Verlag, Berlin, 1996, 228-238. Zbl0851.65054
- [4] Z. Galias and P. Zgliczyński, Computer assisted proof of chaos in the Lorenz system, Phys. D 115 (1998) 165-188. Zbl0941.37018
- [5] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, Springer, Berlin, 1987. Zbl0638.65058
- [6] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, in: Computational Ordinary Differential Equations, J. R. Cash and I. Gladwell (eds.), Clarendon Press, Oxford, 1992. Zbl0767.65069
- [7] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66-72. Zbl0820.58042
- [8] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer assisted proof. Part II: details, Math. Comput. 67 (1998), 1023-1046. Zbl0913.58038
- [9] K. Mischaikow, M. Mrozek and A. Szymczak, Chaos in the Lorenz equations: a computer assisted proof. Part III: the classical parameter values, submitted. Zbl0979.37015
- [10] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966. Zbl0176.13301
- [11] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs, Computers Math. 32 (1996), 83-104. Zbl0861.58027
- [12] M. Mrozek and M. Żelawski, Heteroclinic connections in the Kuramoto-Sivashin- sky equation, Reliab. Comput. 3 (1997), 277-285. Zbl0888.65091
- [13] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and confidence regions, Computing Suppl. 9 (1993), 175-190. Zbl0790.65035
- [14] M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci. 4 (1956), 253-259.
- [15] M. Warmus, Approximation and inequalities in the calculus of approximations. Classification of approximate numbers, ibid. 9 (1961), 241-245. Zbl0098.31304
- [16] P. Zgliczyński, Rigorous verification of chaos in the Rössler equations, in: Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie-Verlag, Berlin, 1996, 287-292. Zbl0849.65041
- [17] P. Zgliczyński, Computer assisted proof of chaos in the Hénon map and in the Rössler equations, Nonlinearity 10 (1997), 243-252. Zbl0907.58048
- [18] P. Zgliczyński, Remarks on computer assisted proof of chaotic behavior in ODE's, in preparation.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.