Set arithmetic and the enclosing problem in dynamics

Marian Mrozek; Piotr Zgliczyński

Annales Polonici Mathematici (2000)

  • Volume: 74, Issue: 1, page 237-259
  • ISSN: 0066-2216

Abstract

top
We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.

How to cite

top

Mrozek, Marian, and Zgliczyński, Piotr. "Set arithmetic and the enclosing problem in dynamics." Annales Polonici Mathematici 74.1 (2000): 237-259. <http://eudml.org/doc/208369>.

@article{Mrozek2000,
abstract = {We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.},
author = {Mrozek, Marian, Zgliczyński, Piotr},
journal = {Annales Polonici Mathematici},
keywords = {dynamical systems; interval arithmetic; rigorous numerical analysis; enclosing problem; computer assisted proofs; set arithmetic},
language = {eng},
number = {1},
pages = {237-259},
title = {Set arithmetic and the enclosing problem in dynamics},
url = {http://eudml.org/doc/208369},
volume = {74},
year = {2000},
}

TY - JOUR
AU - Mrozek, Marian
AU - Zgliczyński, Piotr
TI - Set arithmetic and the enclosing problem in dynamics
JO - Annales Polonici Mathematici
PY - 2000
VL - 74
IS - 1
SP - 237
EP - 259
AB - We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.
LA - eng
KW - dynamical systems; interval arithmetic; rigorous numerical analysis; enclosing problem; computer assisted proofs; set arithmetic
UR - http://eudml.org/doc/208369
ER -

References

top
  1. [1] R. Anguelov, Wrapping function of the initial value problem for ODE: Applications, Reliab. Comput. 5 (1999), 143-164. Zbl0937.65073
  2. [2] R. Anguelov and S. Markov, Wrapping effect and wrapping function, ibid. 4 (1998), 311-330. Zbl0919.65047
  3. [3] G. F. Corliss and R. Rihm, Validating an a priori enclosure using high-order Taylor series, in: Scientific Computing and Validated Numerics (Wuppertal, 1995), Math. Res. 90, Akademie-Verlag, Berlin, 1996, 228-238. Zbl0851.65054
  4. [4] Z. Galias and P. Zgliczyński, Computer assisted proof of chaos in the Lorenz system, Phys. D 115 (1998) 165-188. Zbl0941.37018
  5. [5] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, Springer, Berlin, 1987. Zbl0638.65058
  6. [6] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, in: Computational Ordinary Differential Equations, J. R. Cash and I. Gladwell (eds.), Clarendon Press, Oxford, 1992. Zbl0767.65069
  7. [7] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66-72. Zbl0820.58042
  8. [8] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer assisted proof. Part II: details, Math. Comput. 67 (1998), 1023-1046. Zbl0913.58038
  9. [9] K. Mischaikow, M. Mrozek and A. Szymczak, Chaos in the Lorenz equations: a computer assisted proof. Part III: the classical parameter values, submitted. Zbl0979.37015
  10. [10] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966. Zbl0176.13301
  11. [11] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs, Computers Math. 32 (1996), 83-104. Zbl0861.58027
  12. [12] M. Mrozek and M. Żelawski, Heteroclinic connections in the Kuramoto-Sivashin- sky equation, Reliab. Comput. 3 (1997), 277-285. Zbl0888.65091
  13. [13] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and confidence regions, Computing Suppl. 9 (1993), 175-190. Zbl0790.65035
  14. [14] M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci. 4 (1956), 253-259. 
  15. [15] M. Warmus, Approximation and inequalities in the calculus of approximations. Classification of approximate numbers, ibid. 9 (1961), 241-245. Zbl0098.31304
  16. [16] P. Zgliczyński, Rigorous verification of chaos in the Rössler equations, in: Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie-Verlag, Berlin, 1996, 287-292. Zbl0849.65041
  17. [17] P. Zgliczyński, Computer assisted proof of chaos in the Hénon map and in the Rössler equations, Nonlinearity 10 (1997), 243-252. Zbl0907.58048
  18. [18] P. Zgliczyński, Remarks on computer assisted proof of chaotic behavior in ODE's, in preparation. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.