Multiple positive solutions to singular boundary value problems for superlinear second order FDEs

Daqing Jiang

Annales Polonici Mathematici (2000)

  • Volume: 75, Issue: 3, page 257-270
  • ISSN: 0066-2216

Abstract

top
We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.

How to cite

top

Jiang, Daqing. "Multiple positive solutions to singular boundary value problems for superlinear second order FDEs." Annales Polonici Mathematici 75.3 (2000): 257-270. <http://eudml.org/doc/208399>.

@article{Jiang2000,
abstract = { We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0. },
author = {Jiang, Daqing},
journal = {Annales Polonici Mathematici},
keywords = {superlinear; fixed point theorem; singular boundary value problem; existence; fixed-point theorem},
language = {eng},
number = {3},
pages = {257-270},
title = {Multiple positive solutions to singular boundary value problems for superlinear second order FDEs},
url = {http://eudml.org/doc/208399},
volume = {75},
year = {2000},
}

TY - JOUR
AU - Jiang, Daqing
TI - Multiple positive solutions to singular boundary value problems for superlinear second order FDEs
JO - Annales Polonici Mathematici
PY - 2000
VL - 75
IS - 3
SP - 257
EP - 270
AB - We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.
LA - eng
KW - superlinear; fixed point theorem; singular boundary value problem; existence; fixed-point theorem
UR - http://eudml.org/doc/208399
ER -

References

top
  1. [1] R. P. Agarwal and D. O'Regan, Singular boundary value problems for superlinear second ordinary and delay differential equations, J. Differential Equations 130 (1996), 335-355. 
  2. [2] R. P. Agarwal and D. O'Regan, Nonlinear superlinear singular and nonsingular second order boundary value problems, ibid. 143 (1998), 60-95. 
  3. [3] J. V. Baxley, A singular nonlinear boundary value problem: Membrane response of a spherical cap, SIAM J. Appl. Math. 48 (1988), 497-505. Zbl0642.34014
  4. [4] L. E. Bobisud, D. O'Regan and W. D. Royalty, Singular boundary value problems, Appl. Anal. 23 (1986), 233-243. Zbl0584.34012
  5. [5] J. E. Bouillet and S. M. Gomes, An equation with a singular nonlinearity related to diffusion problems in one dimension, Quart. Appl. Math. 42 (1985), 395-402. Zbl0566.35061
  6. [6] A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), 96-105. Zbl0386.34026
  7. [7] L. H. Erbe and Q. K. Kong, Boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 53 (1994), 377-388. Zbl0816.34046
  8. [8] L. H. Erbe, Q. K. Kong and B. G. Zhang, Oscillation Theory and Boundary Value Problems in Functional Differential Equations, Dekker, New York, 1995. 
  9. [9] L. H. Erbe, Z. C. Wang and L. T. Li, Boundary value problems for second order mixed type functional, differential equations, in: Boundary Value Problems for Functional Differential Equations, World Sci., 1995, 143-151. Zbl0842.34065
  10. [10] J. A. Gatica, G. E. Hernandez and P. Waltman, Radially symmetric solutions of a class of singular elliptic equations, Proc. Edinburgh Math. Soc. 33 (1990), 168-180. Zbl0689.35029
  11. [11] J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second order differential equations, J. Differential Equations 79 (1989), 62-78. Zbl0685.34017
  12. [12] S. M. Gomes and J. Sprekels, Krasonselskii's Theorem on operators compressing a cone: Application to some singular boundary value problems, J. Math. Anal. Appl. 153 (1990), 443-459. Zbl0766.47033
  13. [13] J. Janus and J. Myjak, A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal. 23 (1994), 953-970. Zbl0819.34016
  14. [14] D. Q. Jiang and J. Y. Wang, On boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 116 (2000), 231-241. Zbl0952.34053
  15. [15] D. Q. Jiang and P. X. Weng, Existence of positive solutions for boundary value problems of second-order functional differential equations, Electron. J. Qual. Theory Differ. Equ. 1998, no. 6, 13 pp. Zbl0907.34048
  16. [16] M. A. Krasnosel'skiĭ, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. 
  17. [17] B. S. Lalli and B. G. Zhang, Boundary value problems for second order functional differential equations, Ann. Differential Equations 8 (1992), 261-268. Zbl0760.34054
  18. [18] J. W. Lee and D. O'Regan, Existence results for differential delay equations - I, J. Differential Equations 102 (1993), 342-359. Zbl0782.34070
  19. [19] J. W. Lee and D. O'Regan, Existence results for differential delay equations - II, Nonlinear Anal. 17 (1991), 683-702. Zbl0782.34071
  20. [20] A. Nachman and A. Callegari, A nonlinear boundary value problems in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281. Zbl0453.76002
  21. [21] S. K. Ntouyas, Y. G. Sficas and P. C. Tsamatos, An existence principle for boundary value problems for second order functional-differential equations, Nonlinear Anal. 20 (1993), 215-222. Zbl0774.34052
  22. [22] D. O'Regan, Positive solutions to singular and nonsingular second-order boundary value problems, J. Math. Anal. Appl. 142 (1989), 40-52. 
  23. [23] D. O'Regan, Singular Dirchlet boundary value problems - I, superlinear and nonresonant case, Nonlinear Anal. 29 (1997), 221-245. 
  24. [24] S. D. Taliaferro, A nonlinear singular boundary value problem, ibid. 3 (1979), 897-904. Zbl0421.34021
  25. [25] C. J. Van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation u t = ( | u | m - 1 u x ) x with m > -1, IMA J. Appl. Math. 41 (1988), 147-163. Zbl0701.35090
  26. [26] J. Y. Wang, A two-point boundary value problem with singularity, Northeast. Math. J. 3 (1987), 281-291. 
  27. [27] J. Y. Wang, A free boundary problem for a generalized diffusion equation, Nonlinear Anal. 14 (1990), 691-700. Zbl0721.35092
  28. [28] J. Y. Wang, On positive solutions of singular nonlinear two-point boundary problems, J. Differential Equations 107 (1994), 163-174. Zbl0792.34023
  29. [29] J. Y. Wang, Solvability of singular nonlinear two-point boundary problems, Nonlinear Anal. 24 (1995), 555-561. Zbl0876.34017
  30. [30] J. Y. Wang and W. J. Gao, A singular boundary value problem for the one-dimensional p-Laplacian, J. Math. Anal. Appl. 201 (1996), 851-866. Zbl0860.34011
  31. [31] J. Y. Wang and J. Jiang, The existence of positive solutions to a singular nonlinear boundary value problem, ibid. 176 (1993), 322-329. Zbl0781.34018
  32. [32] H. J. Weinischke, On finite displacement of circular elastic membranes, Math. Methods Appl. Sci. 9 (1987), 76-98. 
  33. [33] P. X. Weng, Boundary value problems for second order mixed-type functional-differential equations, Appl. Math. J. Chinese Univ. Ser. B 12 (1997), 155-164. Zbl0881.34075
  34. [34] P. X. Weng and D. Q. Jiang, Existence of positive solutions for boundary value problem of second-order FDE, Comput. Math. Appl. 37 (1999), 1-9. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.